首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide sequences fused to a gene of interest facilitate the isolation of proteins or protein complexes from cell extracts. In the case of fluorescent protein tags, the tagged protein can be visually localized in living cells. To tag endogenous genes, PCR-based homologous recombination is a powerful approach used in the yeast Saccharomyces cerevisiae. This approach uses short, homologous DNA sequences that flank the tagging cassette to direct recombination. Here, we constructed a set of plasmids, whose sequences were optimized for codon usage in yeast, for Strep-tag II and Twin-Strep tagging in S. cerevisiae. Some plasmids also contain sequences encoding for a fluorescent protein followed by the purification tag. We demonstrate using the yeast pyruvate dehydrogenase (PDH) complex that these plasmids can be used to purify large protein complexes efficiently. We furthermore demonstrate that purification from the endogenous pool using the Strep-tag system results in functionally active complexes. Finally, using the fluorescent tags, we show that a kinase and a phosphatase involved in regulating the activity of the PDH complex localize in the cells’ mitochondria. In conclusion, our cassettes can be used as tools for biochemical, functional, and structural analyses of endogenous multi-protein assemblies in yeast.  相似文献   

2.
Here we describe the construction and application of six new tagging vectors allowing the fusion of two different types of tagging sequences, epitope and localization tags, to any Bacillus subtilis protein. These vectors are based on the backbone of pMUTIN2 and replace the lacZ gene with tagging sequences. Fusion of the tagging sequences occurs by PCR amplification of the 3′ terminal part of the gene of interest (about 300 bp), insertion into the tagging vector in such a way that a fusion protein will be synthesized upon integration of the whole vector via homologous recombination with the chromosomal gene. Three of these tagging sequences (FLAG, hemagglutinin, and c-Myc) allow the covalent addition of a short epitope tag and thereby detection of the fusion proteins in immunoblots, while three other tags (green fluorescent protein+, yellow fluorescent protein, and cyan fluorescent protein) are helpful in assigning proteins within one of the compartments of the cell. The versatility of these vectors was demonstrated by fusing these tags to the cytoplasmically located HtpG and the inner membrane protein FtsH.  相似文献   

3.
While protein tags are ubiquitously utilized in molecular biology, they harbor the potential to interfere with functional traits of their fusion counterparts. Systematic evaluation of the effect of protein tags on function would promote accurate use of tags in experimental setups. Here we examine the effect of green fluorescent protein tagging at either the N or C terminus of budding yeast proteins on subcellular localization and functionality. We use a competition-based approach to decipher the relative fitness of two strains tagged on the same protein but on opposite termini and from that infer the correct, physiological localization for each protein and the optimal position for tagging. Our study provides a first of a kind systematic assessment of the effect of tags on the functionality of proteins and provides a step toward broad investigation of protein fusion libraries.  相似文献   

4.
Here we describe the construction and application of six new tagging vectors allowing the fusion of two different types of tagging sequences, epitope and localization tags, to any Bacillus subtilis protein. These vectors are based on the backbone of pMUTIN2 and replace the lacZ gene with tagging sequences. Fusion of the tagging sequences occurs by PCR amplification of the 3' terminal part of the gene of interest (about 300 bp), insertion into the tagging vector in such a way that a fusion protein will be synthesized upon integration of the whole vector via homologous recombination with the chromosomal gene. Three of these tagging sequences (FLAG, hemagglutinin, and c-Myc) allow the covalent addition of a short epitope tag and thereby detection of the fusion proteins in immunoblots, while three other tags (green fluorescent protein(+), yellow fluorescent protein, and cyan fluorescent protein) are helpful in assigning proteins within one of the compartments of the cell. The versatility of these vectors was demonstrated by fusing these tags to the cytoplasmically located HtpG and the inner membrane protein FtsH.  相似文献   

5.
The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.  相似文献   

6.
We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous Caenorhabditis elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663  相似文献   

7.
Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope.  相似文献   

8.
A global analysis of the localization of 4156 yeast proteins has just been accomplished. Smaller scale analyses have been performed in a variety of organisms. These studies typically use green fluorescent protein as a tag for proteins in living cells. Improvements in the yellow and sapphire color variants will increase their utility. Reengineering of the red fluorescent protein has produced faster maturing tetrameric and monomeric variants not prone to aggregation. Techniques for high-throughput tagging of proteins include integration by homologous recombination, integration using mobile elements or recombinational cloning to produce plasmids expressing fusion proteins. Alternatives to localizing tagged proteins are to use antibodies or aptamers to detect the untagged protein.  相似文献   

9.
The double-joint polymerase chain reaction (DJ-PCR) is a technique that can be used to construct vectors for targeted genome integration without laborious subcloning steps. Here we report the availability of plasmids that facilitate DJ-PCR-based construction of Neurospora crassa tagging vectors. These plasmids allow the creation of green or red fluorescent protein (GFP or RFP) tagging vectors for protein localization studies, as well as split-yellow fluorescent protein (YFP) tagging vectors for bimolecular fluorescence complementation (BiFC) analyses. We have demonstrated the utility of each plasmid with the tagging of known meiotic silencing proteins. Microscopic analysis of the tagged strains indicates that SMS-2 and QIP form macromolecular complexes in the perinuclear region during meiosis.  相似文献   

10.
Barolo S  Castro B  Posakony JW 《BioTechniques》2004,36(3):436-40, 442
In vivo green fluorescent protein (GFP)/red fluorescent protein (RFP) double-labeling studies have been hampered by several inconvenient properties of DsRed, the first described RFP. These disadvantages include a very slow (> 24 h) maturation time, emission of contaminating green light, and low solubility. A recently developed variant of DsRed, called DsRed.T4, has a much shorter maturation time, no significant green emission, and improved solubility. We have constructed Drosophila P-element transformation vectors encoding DsRed.T4 for promoter/enhancer analysis, labeling of living cells, or RFP tagging of proteins. These new vectors have all of the features of the widely used Pelican/Stinger GFP vectors, including insulator sequences to reduce position effects, an extensive polylinker, and both cytoplasmic and nuclear-localized forms of the reporter. We have also constructed an upstream activating sequence (UAS)-DsRed.T4 vector, for GAL4 activation of the reporter. We find that DsRed.T4 is very easily detected in transgenic flies without contamination of the GFP signal and that it matures to its fluorescent form nearly simultaneously with GFP. This advance in Drosophila reporter technology makes timed double-labeling experiments in developing transgenic animals possible for the first time.  相似文献   

11.
Ai HW  Shaner NC  Cheng Z  Tsien RY  Campbell RE 《Biochemistry》2007,46(20):5904-5910
The variant of Aequorea green fluorescent protein (GFP) known as blue fluorescent protein (BFP) was originally engineered by substituting histidine for tyrosine in the chromophore precursor sequence. Herein we report improved versions of BFP along with a variety of engineered fluorescent protein variants with novel and distinct chromophore structures that all share the property of a blue fluorescent hue. The two most intriguing of the new variants are a version of GFP in which the chromophore does not undergo excited-state proton transfer and a version of mCherry with a phenylalanine-derived chromophore. All of the new blue fluorescing proteins have been critically assessed for their utility in live cell fluorescent imaging. These new variants should greatly facilitate multicolor fluorescent imaging by legitimizing blue fluorescing proteins as practical and robust members of the fluorescent protein "toolkit".  相似文献   

12.
Genetically encoded tags are of fundamental importance for live cell imaging. We show that small tetracysteine (TetCys) tags can be highly advantageous for the functionality of the host protein compared with large fluorescent protein tags. One to three concatenated small TetCys tags as well as the large green fluorescent protein (GFP) were fused by integrative epitope tagging to the C terminus of beta-tubulin (Tub2) in the budding yeast Saccharomyces cerevisiae. The increasing tag size correlated with functional interference to the host protein. Tub2 tagged with either 1 x TetCys (10 amino acids [aa]) or 2 x TetCys (20 aa) was able to substitute Tub2 in haploid cells. In contrast, C-terminal tagging of Tub2 with 3 x TetCys (29 aa) or with GFP (244 aa) resulted in nonviable haploid cells. Cells expressing Tub2-1 x TetCys or Tub2-2 x TetCys were stained with FlAsH, which selectively binds to the TetCys-tag. The stained cells displayed dynamic FlAsH-labeled microtubules and low cellular background fluorescence. The presented approach to tag open reading frames (ORFs) at their native loci with very small TetCys-tags and the subsequent visualization of the tagged proteins in vivo can be extended in principle to any ORF in S. cerevisiae.  相似文献   

13.
The availability of green fluorescent protein (GFP) as a tracer for observing proteins in living cells has revolutionized cell biology and spurred an intensive search for GFP variants with novel characteristics, additional autofluorescent proteins and alternative techniques of protein labelling. Two recent studies - one on tagging with tetracysteine motifs and labelling with biarsenic fluorophores of different colours, and the other on GFP tagging and fluorescence recovery after photobleaching (FRAP) - show how membrane channels are added and removed from gap junctions by using different fluorescent tags to distinguish between newly synthesized and older protein populations.  相似文献   

14.

Background

Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming.

Methodology/Principal Findings

Here we report a novel multifunctional green fluorescent protein (mfGFP) tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8×His), streptavidin-binding peptide (SBP), and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP) with 8×His and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM). These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry.

Conclusions and Significance

The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.  相似文献   

15.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

16.
Imaging of live cells has been revolutionized by genetically encoded fluorescent probes, most famously green and other fluorescent proteins, but also peptide tags that bind exogenous fluorophores. We report here the development of protein reporters that generate fluorescence from otherwise dark molecules (fluorogens). Eight unique fluorogen activating proteins (FAPs) have been isolated by screening a library of human single-chain antibodies (scFvs) using derivatives of thiazole orange and malachite green. When displayed on yeast or mammalian cell surfaces, these FAPs bind fluorogens with nanomolar affinity, increasing green or red fluorescence thousands-fold to brightness levels typical of fluorescent proteins. Spectral variation can be generated by combining different FAPs and fluorogen derivatives. Visualization of FAPs on the cell surface or within the secretory apparatus of mammalian cells can be achieved by choosing membrane permeant or impermeant fluorogens. The FAP technique is extensible to a wide variety of nonfluorescent dyes.  相似文献   

17.
The ability to localize proteins of interest in live cells through imaging inherently fluorescent protein tags has provided an unprecedented level of information on cellular organization. However, there are numerous cases where fluorescent tags alter the localization and/or function of the proteins to which they are appended. Clathrin-mediated endocytosis from the plasma membrane is a physiologically important process evolutionarily conserved from yeast to humans. Some proteins that are associated with the machinery of clathrin-mediated endocytosis have been tagged with fluorescent proteins. However, it has not yet been possible to study this process through a protein marker that is specific to this step and still fully functional when linked to a fluorescent protein. In this study, we present the first demonstration that one of these proteins, in this case a green fluorescent protein (GFP) fusion to α-adaptin, a marker of the adaptor protein-2 complex, functionally complements knockdown of endogenous protein through small interfering RNA silencing. GFP–α-adaptin, as well as the techniques used to test the fusion protein, represents an important contribution to the cell biologist's toolbox, which will permit a greater understanding of vesicle trafficking in live cells.  相似文献   

18.
During the last decades, a wide range of fluorescent proteins (FPs) have been developed and improved. This has had a great impact on the possibilities in biological imaging and the investigation of cellular processes at the single-cell level. Recently, we have benchmarked a set of green fluorescent proteins (GFPs) and generated a codon-optimized superfolder GFP for efficient use in the important human pathogen Streptococcus pneumoniae and other low-GC Gram-positive bacteria. In the present work, we constructed and compared four red fluorescent proteins (RFPs) in S. pneumoniae. Two orange-red variants, mOrange2 and TagRFP, and two far-red FPs, mKate2 and mCherry, were codon optimized and examined by fluorescence microscopy and plate reader assays. Notably, protein fusions of the RFPs to FtsZ were constructed by direct transformation of linear Gibson assembly (isothermal assembly) products, a method that speeds up the strain construction process significantly. Our data show that mCherry is the fastest-maturing RFP in S. pneumoniae and is best suited for studying gene expression, while mKate2 and TagRFP are more stable and are the preferred choices for protein localization studies. The RFPs described here will be useful for cell biology studies that require multicolor labeling in S. pneumoniae and related organisms.  相似文献   

19.
We have developed and applied a method unifying fluorescence microscopy and mass spectrometry for studying spatial and temporal properties of proteins and protein complexes in yeast cells. To combine the techniques, first we produced a variety of DNA constructs that can be used for genomic tagging of proteins with modular fluorescent and affinity tags. The modular tag consists of one of the multiple versions of monomeric fluorescent proteins fused to a variety of small affinity epitopes. After this step we tested the constructs by tagging two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, the large protein complexes involved in endocytosis in Saccharomyces cerevisiae, with a variety of fluorescent and affinity probes. Among the modular tags produced we found several combinations that were optimal for determining subcellular localization and for purifying the tagged proteins and protein complexes for the detailed analysis by mass spectrometry. And finally, we applied the designed method for finding the new protein components of eisosomes and for gaining new insights into molecular mechanisms regulating eisosome assembly and disassembly by reversible phosphorylation and dephosphorylation. Our results indicate that this approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.Fluorescent proteins have become invaluable probes for studying molecular processes in living cells with light microscopy techniques (13). Proteins, organelles, and entire cells can be selectively visualized using a variety of fluorescent proteins fused to the proteins of interest (16). Combined with genetics and molecular biology techniques fluorescence microscopy provides an efficient tool for observing molecular phenotypes useful for dissecting the pathways of cell cycle progression and cell response to internal and external signals (7). However, understanding the mechanism controlling the properties of proteins in cells can be a challenging task, frequently requiring a comprehensive characterization of the proteins at the molecular level.The proteins tagged with green fluorescent protein (GFP)1 can be also purified using GFP antibodies. Cheeseman and Desai (8) and Cristea et al. (9) have enriched GFP-tagged proteins and protein complexes for further detailed analysis by MS. The MS-based methods for protein analysis are fast, sensitive, and able to identify both proteins in complex protein mixtures and residues bearing post-translational modifications (10, 11). Thus, the addition of affinity purification and mass spectrometry steps enabled the researchers to study protein interactions and the post-translational modifications in the context of the protein subcellular localization. Juxtaposition of the protein localization, composition of the protein complexes, and post-translational modifications frequently yield a unique perspective of the cellular processes and the molecular mechanisms of their regulation (12, 13).Using fluorescent proteins also as affinity probes can be problematic in several instances. First of all, the good quality antibodies against the rapidly increasing number of fluorescent proteins (3, 6) are not yet readily available. Furthermore raising antibodies specifically recognizing fluorescent proteins originating from the same organism but fluorescing a different color can be difficult or even impossible because such proteins frequently differ by mutations of only a few amino acids (16). Thus, we seek an alternative approach to the design of tags suitable for subcellular localization and purification of proteins and protein complexes that is 1) independent of the availability of antibody to a specific form of a fluorescent protein, 2) suitable for multiplexing, i.e. simultaneous observation of subcellular localization of several proteins and affinity purification of the proteins and stably associated protein complexes, and 3) flexible and easy to modify to incorporate better versions of fluorescent proteins and affinity tags after they are discovered.One possible solution that satisfies the stated requirements is to use a modular tag containing a version of a fluorescent protein fused to an affinity epitope. In this case we can decouple requirements for both modules and optimize the performance of each one independently for fluorescence microscopy and affinity purification experiments. To our knowledge, this possibility was first realized by Thorn and co-worker (14) who have fused 3HA (three repeats of YPYDVPDYA epitope from hemagglutinin protein) and 13MYC (13 repeats of EQKLISEEDL epitope, corresponding to a stretch of the C-terminal amino acids of the human c-MYC protein) tags to several variants of fluorescent proteins. The authors have argued that the fusion of the fluorescent proteins to the affinity epitopes may enable fluorescence and immunochemical analysis but did not test this idea. Cheeseman and Desai (8) fused the S-peptide and hexahistidine epitopes to the GFP protein to enable additional tandem purification steps. Su and co-workers (15) also fused a hexahistidine tag (His6) to GFP to purify recombinantly produced proteins. Although hexahistidine tag performs well for isolation of overexpressed recombinant proteins, it works poorly for affinity purification of low abundance, endogenously expressed proteins (16). A double affinity tag containing a single MYC epitope and hexahistidine was also used to purify recombinantly produced fluorescent proteins (6).Here we describe the design and implementation of the modular fluorescent and affinity tags. These tags contain a variety of fluorescent proteins, which can be used exclusively for obtaining subcellular visualization, and several small epitope tags that can be utilized to perform two-step affinity purification. To test the performance of the constructs produced, we tagged two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, with a variety of modular tags.Eisosomes are large heterodimeric protein complexes recently discovered in Saccharomyces cerevisiae (17). There are ∼50–100 eisosomes in each mature yeast cell distributed uniformly in a characteristic dotted pattern at the cell surface periphery. Each eisosome contains ∼2000–5000 copies of Pil1 and Lsp1. It was shown that eisosomes serve as portals of endocytosis in yeast. The function of eisosomes is regulated by reversible phosphorylation (18, 19).Among the constructs tested, we found several combinations of fluorescent protein and affinity tags that were optimal for determining subcellular localization and purification of the proteins and protein complexes. We applied these tags to further investigate eisosomes and found several new protein components of the complexes and obtained new insights into molecular mechanisms regulating eisosome integrity by reversible phosphorylation and dephosphorylation. Our results indicate that an approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号