首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的:探讨母乳喂养与婴儿HCV感染的关系。方法:采用Meta分析方法对中国生物医学数据库、雏普数据库、方正数据库、PUBMED数据库和MEDLINE报道的文献进行分析。纳入标准依据Abdolmaleky HM方法。用RevMan4.2软件对纳入文献计算特异OR值。x^2test检验OR值异质性。联系的强度采用0R值进行评价。结果:共有120篇文献,37篇为综述,只有6篇文献符合纳入标准。Meta分析OR值为0.60(95%CI=0.22-1.60),证实母乳喂养与婴儿HCV感染无关。结论:母乳喂养不是婴儿感染HCV的危险因素。  相似文献   

3.
4.
Viruses of different families encode for regulators of the complement system (RCAs) or acquire such RCAs from the host to get protection against complement-mediated lysis (CML). As hepatitis C virus (HCV) shares no genetic similarity to any known RCA and is detectable at high titers in sera of infected individuals, we investigated whether HCV has adapted host-derived RCAs to resist CML. Here we report that HCV selectively incorporates CD59 while neither CD55, nor CD46 are associated with the virus. The presence of CD59 was shown by capture assays using patient- and cell culture-derived HCV isolates. Association of CD59 with HCV was further confirmed by Western blot analysis using purified viral supernatants from infected Huh 7.5 cells. HCV captured by antibodies specific for CD59 remained infectious for Huh 7.5 cells. In addition, blocking of CD59 in the presence of active complement reduced the titer of HCV most likely due to CML. HCV produced in CD59 knock-down cells were more significantly susceptible to CML compared to wild type virus, but neither replication, assembly nor infectivity of the virus seemed to be impaired in the absence of CD59. In summary our data indicate that HCV incorporates selectively CD59 in its envelope to gain resistance to CML in serum of infected individuals.  相似文献   

5.
Hepatitis C virus is a blood-borne virus that typically establishes a chronic infection in the liver, which often results in cirrhosis and hepatocellular carcinoma. Progress in understanding the complete virus life cycle has been greatly enhanced by the recent availability of a tissue culture system that produces infectious virus progeny. Thus, it is now possible to gain insight into the roles played by viral components in assembly and egress and the cellular pathways that contribute to virion formation. This minireview describes the key determining viral and host factors that are needed to produce infectious virus.  相似文献   

6.
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.  相似文献   

7.
8.
We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.  相似文献   

9.
戊肝与丙肝病毒在献血员人群中感染状况的对比研究   总被引:1,自引:0,他引:1  
采用市售试剂对武汉地区乡村献血员进行血清抗HEV与抗HCV检测,两者的阳性率分别为5.74%及9.35%。在288份有ALT记录的单采浆献血员中,有近期ALT升高史的献浆者抗HEV及抗HCV检出率分别为14.04%及14.18%,均显著高于无近期ALT升高史的献浆者。对上述标本同时进行多项血清HBV标志检测,抗HEV阳性及抗HCV阳性组献血员多项HBV标志检测结果与相应阴性组比较均未见显著的差别。  相似文献   

10.
Hepatitis C virus (HCV) entry occurs via a pH- and clathrin-dependent endocytic pathway and requires a number of cellular factors, including CD81, the tight-junction proteins claudin 1 (CLDN1) and occludin, and scavenger receptor class B member I (SR-BI). HCV tropism is restricted to the liver, where hepatocytes are tightly packed. Here, we demonstrate that SR-BI and CLDN1 expression is modulated in confluent human hepatoma cells, with both receptors being enriched at cell-cell junctions. Cellular contact increased HCV pseudoparticle (HCVpp) and HCV particle (HCVcc) infection and accelerated the internalization of cell-bound HCVcc, suggesting that the cell contact modulation of receptor levels may facilitate the assembly of receptor complexes required for virus internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization, demonstrating a rate-limiting role for SR-BI in HCV internalization.Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus, classified in the genus Hepacivirus of the family Flaviviridae. Worldwide, approximately 170 million individuals are persistently infected with HCV, and the majority are at risk of developing chronic liver disease. Hepatocytes in the liver are thought to be the principal reservoir of HCV replication. HCV pseudoparticles (HCVpp) demonstrate a restricted tropism for hepatocyte-derived cells, suggesting that virus-encoded glycoprotein-receptor interactions play an important role in defining HCV tissue specificity.Recent evidence suggests that a number of host cell molecules are important for HCV entry: the tetraspanin CD81; scavenger receptor class B member I (SR-BI) (reviewed in reference 11); members of the tight-junction protein family claudin 1 (CLDN1), CLDN6, and CLDN9 (12, 34, 48, 52); and occludin (OCLN) (2, 33, 40). HCV enters cells via a pH- and clathrin-dependent endocytic pathway; however, the exact role(s) played by each of the host cell molecules in this process is unclear (4, 8, 21, 34, 45).CD81 and SR-BI interact with HCV-encoded E1E2 glycoproteins, suggesting a role in mediating virus attachment to the cell (reviewed in reference 44). In contrast, there is minimal evidence to support direct interaction of CLDN1 or OCLN with HCV particles (12). Evans and colleagues proposed that CLDN1 acts at a late stage in the entry process and facilitates fusion between the virus and host cell membranes (12). We (13, 19) and others (9, 48) have reported that CLDN1 associates with CD81, suggesting a role for CLDN1-CD81 complexes in viral entry. Cukierman et al. recently reported that CLDN1 enrichment at cell-cell contacts may generate specialized membrane domains that promote HCV internalization (9). In this study, we demonstrate that cellular contact modulates SR-BI and CLDN1 expression levels and promotes HCV internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization rates, demonstrating a critical and rate-limiting role for SR-BI in HCV internalization.  相似文献   

11.

Background

Interferon and ribavirin therapy for chronic hepatitis C virus (HCV) infection yields sustained virological response (SVR) rates of 50–80%. Several factors such as non-1 genotype, beneficial IL28B genetic variants, low baseline IP-10, and the functionality of HCV-specific T cells predict SVR. With the pending introduction of new therapies for HCV entailing very rapid clearance of plasma HCV RNA, the importance of baseline biomarkers likely will increase in order to tailor therapy. CD26 (DPPIV) truncates the chemokine IP-10 into a shorter antagonistic form, and this truncation of IP-10 has been suggested to influence treatment outcome in patients with chronic HCV infection patients. In addition, previous reports have shown CD26 to be a co-stimulator for T cells. The aim of the present study was to assess the utility of CD26 as a biomarker for treatment outcome in chronic hepatitis C and to define its association with HCV-specific T cells.

Methods

Baseline plasma from 153 genotype 1 and 58 genotype 2/3 infected patients enrolled in an international multicenter phase III trial (DITTO-HCV) and 36 genotype 1 infected patients participating in a Swedish trial (TTG1) were evaluated regarding baseline soluble CD26 (sCD26) and the functionality of HCV-specific CD8+ T cells.

Results

Genotype 1 infected patients achieving SVR in the DITTO (P = 0.002) and the TTG1 (P = 0.02) studies had lower pretreatment sCD26 concentrations compared with non-SVR patients. Sixty-five percent of patients with sCD26 concentrations below 600 ng/mL achieved SVR compared with 39% of the patients with sCD26 exceeding 600 ng/mL (P = 0.01). Patients with sCD26 concentrations below 600 ng/mL had significantly higher frequencies of HCV-specific CD8+ T cells (P = 0.02).

Conclusions

Low baseline systemic concentrations of sCD26 predict favorable treatment outcome in chronic HCV infection and may be associated with higher blood counts of HCV-specific CD8+ T cells.  相似文献   

12.
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.  相似文献   

13.
14.

Background and Objectives

Heroin-dependent patients typically contract hepatitis C virus (HCV) at a disproportionately high level due to needle exchange. The liver is the primary target organ of HCV infection and also the main organ responsible for drug metabolism. Methadone maintenance treatment (MMT) is a major treatment regimen for opioid dependence. HCV infection may affect methadone metabolism but this has rarely been studied. In our current study, we aimed to test the hypothesis that HCV may influence the methadone dosage and its plasma metabolite concentrations in a MMT cohort from Taiwan.

Methods

A total of 366 MMT patients were recruited. The levels of plasma hepatitis B virus (HBV), HCV, human immunodeficiency virus (HIV) antibodies (Ab), liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) were measured along with the urine morphine concentration and amphetamine screening.

Results

Of the 352 subjects in our cohort with HCV test records, 95% were found to be positive for plasma anti-HCV antibody. The liver functional parameters of AST (Wilcoxon Rank-Sum test, P = 0.02) and ALT (Wilcoxon Rank-Sum test, P = 0.04), the plasma methadone concentrations (Wilcoxon Rank-Sum test, P = 0.043) and the R-enantiomer of methadone concentrations (Wilcoxon Rank-Sum test, P = 0.032) were significantly higher in the HCV antibody-positive subjects than in the HCV antibody-negative patients, but not the S-EDDP/methadone dose ratio. The HCV levels correlated with the methadone dose ( = 14.65 and 14.13; P = 0.029 and 0.03) and the S-EDDP/methadone dose ratio ( = −0.41 and −0.40; P = 0.00084 and 0.002) in both univariate and multivariate regression analyses.

Conclusions

We conclude that HCV may influence the methadone dose and plasma S-EDDP/methadone dose ratio in MMT patients in this preliminary study.  相似文献   

15.
The aim of this study is to explore the prevalence of hepatitis C virus (HCV) infection among injection drug users (IDUs) with and without human immunodeficiency virus (HIV) infection in southern Taiwan. For 562 IDUs (265 anti-HIV negative, 297 anti-HIV positive), we analyzed liver function, anti-HIV antibody, anti-HCV antibody, HCV viral loads, and hepatitis B surface antigen (HBsAg). HIV RNA viral loads and CD4 cell count for anti-HIV-seropositive IDUs and the HCV genotype for HCV RNA-seropositive IDUs were measured. The seroprevalence rates of anti-HIV, anti-HCV, and HBsAg were 52.8%, 91.3%, and 15.3%, respectively. All the anti-HIV-seropositive IDUs were positive for HIV RNA. Anti-HCV seropositivity was the most important factor associated with HIV infection (odds ratio [OR], 25.06; 95% confidence intervals [CI], 8.97–74.9), followed by male gender (OR, 6.12; 95% CI, 4.05–9.39) and HBsAg seropositivity (OR, 1.90; 95% CI, 1.11–3.34). Among IDUs positive for anti-HCV, 80.7% had detectable HCV RNA. HCV viremia after HCV exposure was strongly related to HIV infection (OR, 6.262; 95% CI, 1.515–18.28), but negatively correlated to HBsAg seropositivity (OR, 0.161; 95% CI, 0.082–0.317). HCV genotype 6 was the most prevalent genotype among all IDUs (41.0%), followed by genotypes 1 (32.3%), 3 (12.8%), and 2 (5.6%). In conclusion, about half IDUs were infected with HIV and >90% with HCV infection. Male and seropositivity for HBsAg and anti-HCV were factors related to HIV infection among our IDUs. HIV was positively correlated, whereas hepatitis B co-infection was negatively correlated with HCV viremia among IDUs with HCV exposure. Different HCV molecular epidemiology was noted among IDUs.  相似文献   

16.
Accumulated evidence implies that hepatitis C virus (HCV) infects not only the liver but also the immune system. A lymphocyte-specific CD5 molecule was recently identified as essential for infection of T cells with native, patient-derived HCV. To assess whether the proposed hepatocyte receptors may also contribute to HCV lymphotropism, expression of scavenger receptor-class B type 1 (SR-B1), claudin-1 (CLDN-1), claudin-6 (CLDN-6), occludin (OCLN), CD5 and CD81 was examined by real-time RT-PCR and the respective proteins quantified by immunoblotting in HCV-prone and resistant T cell lines, peripheral blood mononuclear cells (PBMC), primary T cells and their subsets, and compared to hepatoma Huh7.5 and HepG2 cells. SR-B1 protein was found in T and hepatoma cell lines but not in PBMC or primary T lymphocytes, CLDN-1 in HCV-resistant PM1 T cell line and hepatoma cells only, while CLDN-6 equally in the cells investigated. OCLN protein occurred in HCV-susceptible Molt4 and Jurkat T cells and its traces in primary T cells, but not in PBMC. CD5 was displayed by HCV-prone T cell lines, primary T cells and PBMC, but not by non-susceptible T and hepatoma cell lines, while CD81 in all cell types except HepG2. Knocking-down OCLN in virus-prone T cell line inhibited HCV infection, while de novo infection downregulated OCLN and CD81, and upregulated CD5 without modifying SR-B1 expression. Overall, while no association between SR-B1, CLDN-1 or CLDN-6 and the susceptibility to HCV was found, CD5 and CD81 expression coincided with virus lymphotropism and that of OCLN with permissiveness of T cell lines but unlikely primary T cells. This study narrowed the range of factors potentially utilized by HCV to infect T lymphocytes amongst those uncovered using laboratory HCV and Huh7.5 cells. Together with the demonstrated role for CD5 in HCV lymphotropism, the findings indicate that virus utilizes different molecules to enter hepatocytes and lymphocytes.  相似文献   

17.
18.

Background

Egypt has by far the largest hepatitis C virus (HCV) prevalence in the world with 14.7% of the population being antibody positive for HCV. The aim of this study was to examine the association between knowledge of HCV and HCV antibody positivity among the Egyptian population.

Methods

We characterized different measures of HCV knowledge and examined their associations with HCV prevalence, by analyzing a nationally representative database using standard epidemiologic methods. The database, the 2008 Egyptian Demographic and Health Survey, included demographic, health, and HCV biomarker information for a sample of over 12,000 individuals.

Results

Basic knowledge of HCV was found to be high, but multiple gaps were identified in the specific knowledge of HCV and its modes of transmission. There was no statistically significant difference in HCV prevalence between those who have heard of HCV infection and those who have not (14.4% vs. 15.9%, p>.05). Similar results were found for the other HCV knowledge measures including those specific to HCV modes of transmission and to the sources of information for HCV awareness. Logistic regression analyses did not demonstrate an association between HCV knowledge and HCV prevalence.

Conclusions

Our results do not provide support for an effect of awareness on reducing the risk of HCV infection in Egypt. Public health messages directed at the lay public may not provide sufficient empowerment for individuals to avoid HCV infection, and should be complemented with prevention programs to promote and strengthen infection control in the settings of exposure, particularly in health care facilities.  相似文献   

19.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

20.
In patients chronically infected with hepatitis C virus and in the HCV cell culture system (HCVcc), it is known that highly infectious virus particles have low to very low buoyant densities. These low densities have been attributed to the association of HCV with lipoprotein components, which occur during the viral morphogenesis. The resulting hybrid particles are known as lipoviral particles (LVP); however, very little is known about how these particles are created. In our study, we used Huh7.5 cells to investigate the intracellular association between envelope proteins and apolipoproteins B and E (ApoB and ApoE, respectively). In particular, we were interested in the role of this association in initiating LVP morphogenesis. Co-immunoprecipitation assays revealed that ApoB, ApoE, and HCV glycoproteins formed a protein complex early in the HCV lifecycle. Confocal analyses of naïve, E1E2-transduced and HCVcc-infected cells showed that HCV glycoproteins, ApoB and ApoE were found strongly colocalized only in the endoplasmic reticulum. We also found that HCV glycoproteins, ApoB and ApoE were already associated with intracellular infectious viral particles and, furthermore, that the protein complex was conserved in the infectious viral particles present in the supernatant of infected Huh7.5 cells. The association of HCV glycoproteins with ApoE was also evidenced in the HCVpp system, using the non-hepatic HEK293T cell line. We suggest that the complex formed by HCV E1E2, ApoB, and ApoE may initiate lipoviral particle morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号