首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles.  相似文献   

2.
Masone D  Vaca IC  Pons C  Recio JF  Guallar V 《Proteins》2012,80(3):818-824
Structural prediction of protein-protein complexes given the structures of the two interacting compounds in their unbound state is a key problem in biophysics. In addition to the problem of sampling of near-native orientations, one of the modeling main difficulties is to discriminate true from false positives. Here, we present a hierarchical protocol for docking refinement able to discriminate near native poses from a group of docking candidates. The main idea is to combine an efficient sampling of the full system hydrogen bond network and side chains, together with an all-atom force field and a surface generalized born implicit solvent. We tested our method on a set of twenty two complexes containing a near-native solution within the top 100 docking poses, obtaining a near native solution as the top pose in 70% of the cases. We show that all atom force fields optimized H-bond networks do improve significantly state of the art scoring functions.  相似文献   

3.
While many structures of single protein components are becoming available, structural characterization of their complexes remains challenging. Methods for modeling assembly structures from individual components frequently suffer from large errors, due to protein flexibility and inaccurate scoring functions. However, when additional information is available, it may be possible to reduce the errors and compute near-native complex structures. One such type of information is a small angle X-ray scattering (SAXS) profile that can be collected in a high-throughput fashion from a small amount of sample in solution. Here, we present an efficient method for protein–protein docking with a SAXS profile (FoXSDock): generation of complex models by rigid global docking with PatchDock, filtering of the models based on the SAXS profile, clustering of the models, and refining the interface by flexible docking with FireDock. FoXSDock is benchmarked on 124 protein complexes with simulated SAXS profiles, as well as on 6 complexes with experimentally determined SAXS profiles. When induced fit is less than 1.5 Å interface Cα RMSD and the fraction residues of missing from the component structures is less than 3%, FoXSDock can find a model close to the native structure within the top 10 predictions in 77% of the cases; in comparison, docking alone succeeds in only 34% of the cases. Thus, the integrative approach significantly improves on molecular docking alone. The improvement arises from an increased resolution of rigid docking sampling and more accurate scoring.  相似文献   

4.
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.  相似文献   

5.
Zhao N  Pang B  Shyu CR  Korkin D 《Proteomics》2011,11(22):4321-4330
Structural knowledge about protein-protein interactions can provide insights to the basic processes underlying cell function. Recent progress in experimental and computational structural biology has led to a rapid growth of experimentally resolved structures and computationally determined near-native models of protein-protein interactions. However, determining whether a protein-protein interaction is physiological or it is the artifact of an experimental or computational method remains a challenging problem. In this work, we have addressed two related problems. The first problem is distinguishing between the experimentally obtained physiological and crystal-packing protein-protein interactions. The second problem is concerned with the classification of near-native and inaccurate docking models. We first defined a universal set of interface features and employed a support vector machines (SVM)-based approach to classify the interactions for both problems, with the accuracy, precision, and recall for the first problem classifier reaching 93%. To improve the classification, we next developed a semi-supervised learning approach for the second problem, using transductive SVM (TSVM). We applied both classifiers to a commonly used protein docking benchmark of 124 complexes. We found that while we reached the classification accuracies of 78.9% for the SVM classifier and 80.3% for the TSVM classifier, improving protein-docking methods by model re-ranking remains a challenging problem.  相似文献   

6.
7.
The accurate scoring of rigid-body docking orientations represents one of the major difficulties in protein-protein docking prediction. Other challenges are the development of faster and more efficient sampling methods and the introduction of receptor and ligand flexibility during simulations. Overall, good discrimination of near-native docking poses from the very early stages of rigid-body protein docking is essential step before applying more costly interface refinement to the correct docking solutions. Here we explore a simple approach to scoring of rigid-body docking poses, which has been implemented in a program called pyDock. The scheme is based on Coulombic electrostatics with distance dependent dielectric constant, and implicit desolvation energy with atomic solvation parameters previously adjusted for rigid-body protein-protein docking. This scoring function is not highly dependent on specific geometry of the docking poses and therefore can be used in rigid-body docking sets generated by a variety of methods. We have tested the procedure in a large benchmark set of 80 unbound docking cases. The method is able to detect a near-native solution from 12,000 docking poses and place it within the 100 lowest-energy docking solutions in 56% of the cases, in a completely unrestricted manner and without any other additional information. More specifically, a near-native solution will lie within the top 20 solutions in 37% of the cases. The simplicity of the approach allows for a better understanding of the physical principles behind protein-protein association, and provides a fast tool for the evaluation of large sets of rigid-body docking poses in search of the near-native orientation.  相似文献   

8.
Martin O  Schomburg D 《Proteins》2008,70(4):1367-1378
Biological systems and processes rely on a complex network of molecular interactions. While the association of biological macromolecules is a fundamental biochemical phenomenon crucial for the understanding of complex living systems, protein-protein docking methods aim for the computational prediction of protein complexes from individual subunits. Docking algorithms generally produce large numbers of putative protein complexes with only few of these conformations resembling the native complex structure within an acceptable degree of structural similarity. A major challenge in the field of docking is to extract near-native structure(s) out of the large pool of solutions, the so called scoring or ranking problem. A series of structural, chemical, biological and physical properties are used in this work to classify docked protein-protein complexes. These properties include specialized energy functions, evolutionary relationship, class specific residue interface propensities, gap volume, buried surface area, empiric pair potentials on residue and atom level as well as measures for the tightness of fit. Efficient comprehensive scoring functions have been developed using probabilistic Support Vector Machines in combination with this array of properties on the largest currently available protein-protein docking benchmark. The established classifiers are shown to be specific for certain types of protein-protein complexes and are able to detect near-native complex conformations from large sets of decoys with high sensitivity. Using classification probabilities the ranking of near-native structures was drastically improved, leading to a significant enrichment of near-native complex conformations within the top ranks. It could be shown that the developed schemes outperform five other previously published scoring functions.  相似文献   

9.
MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS: We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. AVAILABILITY: The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu  相似文献   

10.
杨凌云  吕强 《生物信息学》2011,9(2):167-170
蛋白质小分子对接的难点之一是从生成的大量候选结构中挑选出近天然构象。本文使用了一种基于SVR的方法来挑选RosettaLigand生成的GPCR—配体decoy构象中的近天然构象。首先,对已有数据训练得到一个SVR模型,预测decoy构象的LRMSD,然后依此挑选近天然构象。最终,比较了本文方法和RosettaLigand方法挑选出的近天然构象decoy的质量,结果优于RosettaLigand方法,结果表明了本文方法能够有效地挑选出近天然构象。  相似文献   

11.
The methods of continuum electrostatics are used to calculate the binding free energies of a set of protein-protein complexes including experimentally determined structures as well as other orientations generated by a fast docking algorithm. In the native structures, charged groups that are deeply buried were often found to favor complex formation (relative to isosteric nonpolar groups), whereas in nonnative complexes generated by a geometric docking algorithm, they were equally likely to be stabilizing as destabilizing. These observations were used to design a new filter for screening docked conformations that was applied, in conjunction with a number of geometric filters that assess shape complementarity, to 15 antibody-antigen complexes and 14 enzyme-inhibitor complexes. For the bound docking problem, which is the major focus of this paper, native and near-native solutions were ranked first or second in all but two enzyme-inhibitor complexes. Less success was encountered for antibody-antigen complexes, but in all cases studied, the more complete free energy evaluation was able to identify native and near-native structures. A filter based on the enrichment of tyrosines and tryptophans in antibody binding sites was applied to the antibody-antigen complexes and resulted in a native and near-native solution being ranked first and second in all cases. A clear improvement over previously reported results was obtained for the unbound antibody-antigen examples as well. The algorithm and various filters used in this work are quite efficient and are able to reduce the number of plausible docking orientations to a size small enough so that a final more complete free energy evaluation on the reduced set becomes computationally feasible.  相似文献   

12.
13.
Liang S  Meroueh SO  Wang G  Qiu C  Zhou Y 《Proteins》2009,75(2):397-403
The identification of near native protein-protein complexes among a set of decoys remains highly challenging. A strategy for improving the success rate of near native detection is to enrich near native docking decoys in a small number of top ranked decoys. Recently, we found that a combination of three scoring functions (energy, conservation, and interface propensity) can predict the location of binding interface regions with reasonable accuracy. Here, these three scoring functions are modified and combined into a consensus scoring function called ENDES for enriching near native docking decoys. We found that all individual scores result in enrichment for the majority of 28 targets in ZDOCK2.3 decoy set and the 22 targets in Benchmark 2.0. Among the three scores, the interface propensity score yields the highest enrichment in both sets of protein complexes. When these scores are combined into the ENDES consensus score, a significant increase in enrichment of near-native structures is found. For example, when 2000 dock decoys are reduced to 200 decoys by ENDES, the fraction of near-native structures in docking decoys increases by a factor of about six in average. ENDES was implemented into a computer program that is available for download at http://sparks.informatics.iupui.edu.  相似文献   

14.
Decoys As the Reference State (DARS) is a simple and natural approach to the construction of structure-based intermolecular potentials. The idea is generating a large set of docked conformations with good shape complementarity but without accounting for atom types, and using the frequency of interactions extracted from these decoys as the reference state. In principle, the resulting potential is ideal for finding near-native conformations among structures obtained by docking, and can be combined with other energy terms to be used directly in docking calculations. We investigated the performance of various DARS versions for docking enzyme-inhibitor, antigen-antibody, and other type of complexes. For enzyme-inhibitor pairs, DARS provides both excellent discrimination and docking results, even with very small decoy sets. For antigen-antibody complexes, DARS is slightly better than a number of interaction potentials tested, but results are worse than for enzyme-inhibitor complexes. With a few exceptions, the DARS docking results are also good for the other complexes, despite poor discrimination, and we show that the latter is not a correct test for docking accuracy. The analysis of interactions in antigen-antibody pairs reveals that, in constructing pairwise potentials for such complexes, one should account for the asymmetry of hydrophobic patches on the two sides of the interface. Similar asymmetry does occur in the few other complexes with poor DARS docking results.  相似文献   

15.
MOTIVATION: Protein-protein docking algorithms typically generate large numbers of possible complex structures with only a few of them resembling the native structure. Recently (Duan et al., Protein Sci, 14:316-218, 2005), it was observed that the surface density of conserved residue positions is high at the interface regions of interacting protein surfaces, except for antibody-antigen complexes, where a lesser number of conserved positions than average is observed at the interface regions. Using this observation, we identified putative interacting regions on the surface of interacting partners and significantly improved docking results by assigning top ranks to near-native complex structures. In this paper, we combine the residue conservation information with a widely used shape complementarity algorithm to generate candidate complex structures with a higher percentage of near-native structures (hits). What is new in this work is that the conservation information is used early in the generation stage and not only in the ranking stage of the docking algorithm. This results in a significantly larger number of generated hits and an improved predictive ability in identifying the native structure of protein-protein complexes. RESULTS: We report on results from 48 well-characterized protein complexes, which have enough residue conservation information from the same 59 benchmark complexes used in our previous work. We compute conservation indices of residue positions on the surfaces of interacting proteins using available homologous sequences from UNIPROT and calculate the solvent accessible surface area. We combine this information with shape-complementarity scores to generate candidate protein-protein complex structures. When compared with pure shape-complementarity algorithms, performed by FTDock, our method results in significantly more hits, with the improvement being over 100% in many instances. We demonstrate that residue conservation information is useful not only in refinement and scoring of docking solutions, but also helpful in enrichment of near-native-structures during the generation of candidate geometries of complex structures.  相似文献   

16.
Li CH  Cao LB  Su JG  Yang YX  Wang CX 《Proteins》2012,80(1):14-24
Understanding the key factors that influence the preferences of residue-nucleotide interactions in specific protein-RNA interactions has remained a research focus. We propose an effective approach to derive residue-nucleotide propensity potentials through considering both the types of residues and nucleotides, and secondary structure information of proteins and RNAs from the currently largest nonredundant and nonribosomal protein-RNA interaction database. To test the validity of the potentials, we used them to select near-native structures from protein-RNA docking poses. The results show that considering secondary structure information, especially for RNAs, greatly improves the predictive power of pair potentials. The success rate is raised from 50.7 to 65.5% for the top 2000 structures, and the number of cases in which a near-native structure is ranked in top 50 is increased from 7 to 13 out of 17 cases. Furthermore, the exclusion of ribosomes from the database contributes 8.3% to the success rate. In addition, some very interesting findings follow: (i) the protein secondary structure element π-helix is strongly associated with RNA-binding sites; (ii) the nucleotide uracil occurs frequently in the most preferred pairs in which the unpaired and non-Watson-Crick paired uracils are predominant, which is probably significant in evolution. The new residue-nucleotide potentials can be helpful for the progress of protein-RNA docking methods, and for understanding the mechanisms of protein-RNA interactions.  相似文献   

17.
The roughness of the protein energy surface poses a significant challenge to search algorithms that seek to obtain a structural characterization of the native state. Recent research seeks to bias search toward near-native conformations through one-dimensional structural profiles of the protein native state. Here we investigate the effectiveness of such profiles in a structure prediction setting for proteins of various sizes and folds. We pursue two directions. We first investigate the contribution of structural profiles in comparison to or in conjunction with physics-based energy functions in providing an effective energy bias. We conduct this investigation in the context of Metropolis Monte Carlo with fragment-based assembly. Second, we explore the effectiveness of structural profiles in providing projection coordinates through which to organize the conformational space. We do so in the context of a robotics-inspired search framework proposed in our lab that employs projections of the conformational space to guide search. Our findings indicate that structural profiles are most effective in obtaining physically realistic near-native conformations when employed in conjunction with physics-based energy functions. Our findings also show that these profiles are very effective when employed instead as projection coordinates to guide probabilistic search toward undersampled regions of the conformational space.  相似文献   

18.
19.
Protein-protein docking with backbone flexibility   总被引:1,自引:0,他引:1  
Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models.  相似文献   

20.
Protein docking algorithms aim to predict the 3D structure of a protein complex from the structures of its separated components. In the past, most docking algorithms focused on docking pairs of proteins to form dimeric complexes. However, attention is now turning towards the more difficult problem of using docking methods to predict the structures of multicomponent complexes. In both cases, however, the constituent proteins often change conformation upon complex formation, and this can cause many algorithms to fail to detect near-native binding orientations due to the high number of atomic steric clashes in the list of candidate solutions. An increasingly popular way to retain more near-native orientations is to define one or more restraints that serve to modulate or override the effect of steric clashes. Here, we present an updated version of our “EROS-DOCK” docking algorithm which has been extended to dock arbitrary dimeric and trimeric complexes, and to allow the user to define residue-residue or atom-atom interaction restraints. Our results show that using even just one residue-residue restraint in each interaction interface is sufficient to increase the number of cases with acceptable solutions within the top 10 from 51 to 121 out of 173 pairwise docking cases, and to successfully dock 8 out of 11 trimeric complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号