首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Structure and expression of a chicken gene coding for U1 RNA   总被引:43,自引:0,他引:43  
We have isolated and sequenced a genomic fragment containing sequences complementary to chicken U1 RNA. The sequence of this genomic U1 gene is completely homologous and colinear with that of chicken U1 RNA. This U1 gene is part of a multigene family (6--10 copies per haploid genome), and these loci do not appear to be closely clustered. Sequences complementary to other snRNAs are not present within the 2.5 kb genomic fragment containing the U1 gene. We have determined that U1 RNA is synthesized by polymerase II; however, a "Hogness box" is not present upstream from its cap site at the position usually observed for mRNA genes. The synthesis of U1 RNA in oviduct nuclei during different states of hormonal induction also appears to be constitutive.  相似文献   

5.
Nucleotide sequence of small polyadenylated B2 RNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
  相似文献   

6.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented.  相似文献   

7.
S Wang  L Guo  E Allen    W A Miller 《RNA (New York, N.Y.)》1999,5(6):728-738
Highly efficient cap-independent translation initiation at the 5'-proximal AUG is facilitated by the 3' translation enhancer sequence (3'TE) located near the 3' end of barley yellow dwarf virus (BYDV) genomic RNA. The role of the 3'TE in regulating viral translation was examined. The 3'TE is required for translation and thus replication of the genomic RNA that lacks a 5' cap (Allen et al., 1999, Virology253:139-144). Here we show that the 3'TE also mediates translation of uncapped viral subgenomic mRNAs (sgRNA1 and sgRNA2). A 109-nt viral sequence is sufficient for 3'TE activity in vitro, but additional viral sequence is necessary for cap-independent translation in vivo. The 5' extremity of the sequence required in the 3' untranslated region (UTR) for cap-independent translation in vivo coincides with the 5' end of sgRNA2. Thus, sgRNA2 has the 3'TE in its 5' UTR. Competition studies using physiological ratios of viral RNAs showed that, in trans, the 109-nt 3'TE alone, or in the context of 869-nt sgRNA2, inhibited translation of genomic RNA much more than it inhibited translation of sgRNA1. The divergent 5' UTRs of genomic RNA and sgRNA1 contribute to this differential susceptibility to inhibition. We propose that sgRNA2 serves as a novel regulatory RNA to carry out the switch from early to late gene expression. Thus, this new mechanism for temporal control of translation control involves a sequence that stimulates translation in cis and acts in trans to selectively inhibit translation of viral mRNA.  相似文献   

8.
9.
Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription   总被引:27,自引:22,他引:5       下载免费PDF全文
  相似文献   

10.
Murine leukemia virus (MLV)-based retroviral vectors is widely used for gene transfer and basic research, and production of high-titer retroviral vectors is very important. Here we report that expression of the Y-box binding protein 1 (YB-1) enhanced the production of infectious MLV vectors. YB-1 specifically increased the stability of viral genomic RNA in virus-producing cells, and thus increasing viral RNA levels in both producer cells and virion particles. The viral element responsive to YB-1 was mapped to the repeat sequence (R region) in MLV genomic RNA. These results identified YB-1 as a MLV mRNA stabilizer, which can be used for improving production of MLV vectors.  相似文献   

11.
The results of molecular hybridization experiments have demonstrated that the RNA genome of RD-114 virus has extensive nucleotide sequence homology with the RNA genome of Crandell virus, an endogenous type C virus of cats, but only limited homology with the RNA genomes of feline sarcoma virus and feline leukemia virus. The genomic RNAs of RD-114 virus and Crandell virus also had identical sedimentation coefficients of 50S. A structural rearrangement of genomic RNA did not exist within released RD-114 virions, whereas a structural rearrangement of genomic RNA did occur within feline sarcoma virions and feline leukemia virions after release from virus-producing cells.  相似文献   

12.
13.
14.
We previously have mapped N6-methyladenosine (m6A) sites within the genomic RNA of Rous sarcoma virus (RSV). The results of that study and of experiments using inhibitors of methylation suggest that m6A might be involved in mRNA processing events. We describe an approach for directly analyzing the function of m6A in RNA and for studying the sequence specificity of the m6A methylase. Two sites of methylation in RSV (nucleotides 7414 and 7424) were altered by oligonucleotide-directed mutagenesis. The highly conserved GAC consensus sequence at those sites was changed to GAU. The new sequences were no longer methylated in the RSV genomic RNA; the GAC sequence was required for efficient base modification at those two adenosines. The altered m6A pattern did not affect viral RNA processing or the viral life cycle within infected cells.  相似文献   

15.
RNA editing   总被引:3,自引:0,他引:3  
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.  相似文献   

16.
17.
Wu HY  Brian DA 《Journal of virology》2007,81(7):3206-3215
Coronaviruses have a positive-strand RNA genome and replicate through the use of a 3' nested set of subgenomic mRNAs each possessing a leader (65 to 90 nucleotides [nt] in length, depending on the viral species) identical to and derived from the genomic leader. One widely supported model for leader acquisition states that a template switch takes place during the generation of negative-strand antileader-containing templates used subsequently for subgenomic mRNA synthesis. In this process, the switch is largely driven by canonical heptameric donor sequences at intergenic sites on the genome that match an acceptor sequence at the 3' end of the genomic leader. With experimentally placed 22-nt-long donor sequences within a bovine coronavirus defective interfering (DI) RNA we have shown that matching sites occurring anywhere within a 65-nt-wide 5'-proximal genomic acceptor hot spot (nt 33 through 97) can be used for production of templates for subgenomic mRNA synthesis from the DI RNA. Here we report that with the same experimental approach, template switches can be induced in trans from an internal site in the DI RNA to the negative-strand antigenome of the helper virus. For these, a 3'-proximal 89-nt acceptor hot spot on the viral antigenome (nt 35 through 123), largely complementary to that described above, was found. Molecules resulting from these switches were not templates for subgenomic mRNA synthesis but, rather, ambisense chimeras potentially exceeding the viral genome in length. The results suggest the existence of a coronavirus 5'-proximal partially double-stranded template switch-facilitating structure of discrete width that contains both the viral genome and antigenome.  相似文献   

18.
19.
APOBEC3G (APO3G) is a host cytidine deaminase that is incorporated into human immunodeficiency virus type 1 (HIV-1) particles. We report here that viral RNA promotes stable association of APO3G with HIV-1 nucleoprotein complexes (NPC). A target sequence located within the 5′-untranslated region of the HIV-1 RNA was identified to be necessary and sufficient for efficient APO3G packaging. Fine mapping revealed a sequence normally involved in viral genomic RNA dimerization and Gag binding to be important for APO3G packaging and association with viral NPC. Our data suggest that packaging of APO3G into HIV-1 NPC is enhanced by viral RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号