首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

2.
We have previously shown that defects in COPI coatomer proteins cause 80% mortality in blood fed Aedes aegypti mosquitoes by 96 h post-feeding. In this study we show that similar deficiencies in COPII and clathrin mediated vesicle transport do not disrupt blood meal digestion and are not lethal, even though both COPII and clathrin functions are required for ovarian development. Since COPI vesicle transport is controlled in mammalian cells by upstream G proteins and associated regulatory factors, we investigated the function of the orthologous ADP-ribosylation factor 1 (ARF1) and ARF4 proteins in mosquito tissues. We found that both ARF1 and ARF4 function upstream of COPI vesicle transport in blood fed mosquitoes given that an ARF1/ARF4 double deficiency is required to phenocopy the feeding-induced mortality observed in COPI coatomer deficient mosquitoes. Small molecule inhibitors of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) are often transitory, and therefore, we investigated the role of five Ae. aegypti ARF-GEF and ARF-GAP proteins in blood meal digestion using RNA interference. Surprisingly, we found that ARF-GEF and ARF-GAP functions are not required for blood meal digestion, even though both vitellogenesis and ovarian development in Ae. aegypti are dependent on GBF1 (ARF-GEF) and GAP1/GAP2 (ARF-GAPs) proteins. Moreover, deficiencies in orthologous COPI regulating genes in Anopheles stephensi mosquitoes had similar phenotypes, indicating conserved functions in these two mosquito species. We propose that based on the need for rapid initiation of protein digestion and peritrophic membrane formation, COPI vesicle transport in midgut epithelial cells is not dependent on ARF-GEF and ARF-GAP regulatory proteins to mediate vesicle recycling within the first 48 h post-feeding.  相似文献   

3.
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.  相似文献   

4.
Bauer M  Pelkmans L 《FEBS letters》2006,580(23):5559-5564
The clathrin, COPI and COPII scaffolds are paradigm vesicle coats in membrane trafficking. Recent advances in our understanding of the caveolar coat have generated a new paradigm. It represents those membrane coats, where a considerable part of the protein component is lipid modified, and integrated into the cytosolic leaflet of the vesicle membrane by a hairpin-like hydrophobic structure. Such coat proteins are permanently associated with membranes, and form oligomers early after synthesis. These oligomers assemble into a coat that has high affinity for particular lipids, creating lipid microdomains within the membrane. The combined protein-lipid structure should be considered as the scaffold that entraps ligands, either through affinity with the protein or with the lipid component, and that has the ability to shape membranes. Besides scaffolds assembled by caveolins, scaffolds assembled by reticulons and PHB domain-containing proteins such as the reggie/flotillin proteins fit this paradigm.  相似文献   

5.
The presence of multiple membrane-bound intracellular compartments is a major feature of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. Here, we identify the SEA (Seh1-associated) protein complex in yeast that contains the nucleoporin Seh1 and Sec13, the latter subunit of both the nuclear pore complex and the COPII coating complex. The SEA complex also contains Npr2 and Npr3 proteins (upstream regulators of TORC1 kinase) and four previously uncharacterized proteins (Sea1-Sea4). Combined computational and biochemical approaches indicate that the SEA complex proteins possess structural characteristics similar to the membrane coating complexes COPI, COPII, the nuclear pore complex, and, in particular, the related Vps class C vesicle tethering complexes HOPS and CORVET. The SEA complex dynamically associates with the vacuole in vivo. Genetic assays indicate a role for the SEA complex in intracellular trafficking, amino acid biogenesis, and response to nitrogen starvation. These data demonstrate that the SEA complex is an additional member of a family of membrane coating and vesicle tethering assemblies, extending the repertoire of protocoatomer-related complexes.  相似文献   

6.
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.  相似文献   

7.
The formation of coated vesicles is a fundamental step in many intracellular trafficking pathways. COPI and clathrin represent two important and distinct sets of vesicle coating machinery, involved primarily in mediating intra-Golgi and endocytic transport, respectively. Here we identify an important functional region at the carboxyl terminus of the gamma subunit of the COPI complex (gammaCOP) and describe the X-ray crystal structure of this domain at 2.3 A resolution. This domain of gammaCOP exhibits unexpected structural similarity to the carboxyl-terminal appendage domains of the alpha and beta subunits of the AP2 adaptor proteins, integral components of clathrin-coated vesicles. The remarkable structural conservation exhibited by the gammaCOP appendage domain, coupled with functional data and primary sequence analysis, supports a model of COPI function with significant structural and mechanistic parallels to vesicular transport by the clathrin/AP2 system.  相似文献   

8.
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.  相似文献   

9.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

10.
This review is dedicated to the structure and function of Golgi apparatus (GA). It summarizes contemporary data published in numerous experimental papers and in several reviews. Possible ways of intra-Golgi transport of proteins, existent models of structural and functional organization of Golgi organelle, as well as the issues of its biogenesis, posttranslational modification and sorting of proteins and lipids, and mechanisms of their trafficking are discussed. Special attention is paid to the role of coatomer proteins (COPI, COPII and clathrin), fusion proteins (SNAREs), and small GTPases (ARF, SARI) in the secretory pathway. In addition, the phenomena of ultrastructural alterations of GA due to various functional conditions and physiological stimuli are specifically accented. We included in this review our original data on a probable involvement of GA in water transport, and on the organization of atypical GA in microsporidia--intracellular parasitic protists.  相似文献   

11.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

12.
Traffic COPs and the formation of vesicle coats   总被引:9,自引:0,他引:9  
Forward and retrograde trafficking of secretory proteins between the endoplasmic reticulum and the Golgi apparatus is driven by two biochemically distinct vesicle coats, COPI and COPII. Assembly of the coats on their target membranes is thought to provide the driving force for membrane deformation and the selective packaging of cargo and targeting molecules into nascent transport vesicles. This review describes our current knowledge on these issues and discusses how the two coats may be differentially targeted and assembled to achieve protein sorting and transport within the early secretory pathway.  相似文献   

13.
Low temperature induces a transport blockade at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in cultured cells. Our previous studies support that the primary effect of low temperature is the detachment of COPI complexes from membranes. In the present study, we have used immunofluorescence and cryoimmunoelectron microscopy to investigate the effects of low temperature on both COPII and clathrin coat complexes in HeLa cells. Strikingly, COPII proteins moved from membranes to the cytosol at 15°C, accumulating into electron-dense areas. In agreement with this observation, we also showed that ER exit is delayed in cells cultured at this temperature. In contrast, clathrin coat is not affected. Together, our results demonstrate that low temperature induces COPII dissociation from membranes and slow exit from the endoplasmic reticulum. Emma Martínez-Alonso and Mónica Tomás contributed equally to this study.  相似文献   

14.
Assembly and trafficking of neurotransmitter receptors are processes contingent upon interactions between intracellular chaperone systems and discrete determinants in the receptor proteins. Kainate receptor subunits, which form ionotropic glutamate receptors with diverse roles in the central nervous system, contain a variety of trafficking determinants that promote either membrane expression or intracellular sequestration. In this report, we identify the coatomer protein complex I (COPI) vesicle coat as a critical mechanism for retention of the kainate receptor subunit KA2 in the endoplasmic reticulum. COPI subunits immunoprecipitated with KA2 subunits from both cerebellum and COS-7 cells, and beta-COP protein interacted directly with immobilized KA2 peptides containing the arginine-rich retention/retrieval determinant. Association between COPI proteins and KA2 subunits was significantly reduced upon alanine substitution of this signal in the cytoplasmic tail of KA2. Temperature-sensitive degradation of COPI complex proteins was correlated with an increase in plasma membrane localization of the homologous KA2 receptor. Assembly of heteromeric GluR6a/KA2 receptors markedly reduced association of KA2 and COPI. Finally, the reduction in COPI binding was correlated with an increased association with 14-3-3 proteins, which mediate forward trafficking of other integral signaling proteins. These interactions therefore represent a critical early checkpoint for biosynthesis of functional KARs.  相似文献   

15.
Brain-specific AP180 is present in clathrin coats at equal concentration to the adapter complex, AP2, and assembles clathrin faster than any other protein in vitro. Both AP180 and its ubiquitously expressed homolog clathrin assembly lymphoid myeloid leukemia protein (CALM) control vesicle size and shape in clathrin mediated endocytosis. The clathrin assembly role of AP180 is mediated by a long disordered C-terminal assembly domain. Within this assembly domain, a central acidic clathrin and adapter binding (CLAP) sub-domain contains all of the known short binding motifs for clathrin and AP2. The role of the remaining ∼16 kDa C-terminal sequence has not been clear. We show that this sequence has a separate function in ensuring efficient binding of clathrin, based on in vitro binding and ex vivo transferrin uptake assays. Sequence alignment suggests the C-terminal sub-domain is conserved in CALM.  相似文献   

16.
The coatomer (COPI) complex mediates Golgi to ER recycling of membrane proteins containing a dilysine retrieval motif. However, COPI was initially characterized as an anterograde-acting coat complex. To investigate the direct and primary role(s) of COPI in ER/Golgi transport and in the secretory pathway in general, we used PCR-based mutagenesis to generate new temperature-conditional mutant alleles of one COPI gene in Saccharomyces cerevisiae, SEC21 (γ-COP). Unexpectedly, all of the new sec21 ts mutants exhibited striking, cargo-selective ER to Golgi transport defects. In these mutants, several proteins (i.e., CPY and α-factor) were completely blocked in the ER at nonpermissive temperature; however, other proteins (i.e., invertase and HSP150) in these and other COPI mutants were secreted normally. Nearly identical cargo-specific ER to Golgi transport defects were also induced by Brefeldin A. In contrast, all proteins tested required COPII (ER to Golgi coat complex), Sec18p (NSF), and Sec22p (v-SNARE) for ER to Golgi transport. Together, these data suggest that COPI plays a critical but indirect role in anterograde transport, perhaps by directing retrieval of transport factors required for packaging of certain cargo into ER to Golgi COPII vesicles. Interestingly, CPY–invertase hybrid proteins, like invertase but unlike CPY, escaped the sec21 ts mutant ER block, suggesting that packaging into COPII vesicles may be mediated by cis-acting sorting determinants in the cargo proteins themselves. These hybrid proteins were efficiently targeted to the vacuole, indicating that COPI is also not directly required for regulated Golgi to vacuole transport. Additionally, the sec21 mutants exhibited early Golgi-specific glycosylation defects and structural aberrations in early but not late Golgi compartments at nonpermissive temperature. Together, these studies demonstrate that although COPI plays an important and most likely direct role both in Golgi–ER retrieval and in maintenance/function of the cis-Golgi, COPI does not appear to be directly required for anterograde transport through the secretory pathway.  相似文献   

17.
In eukaryotic cells, secretion is achieved by vesicular transport. Fusion of such vesicles with the correct target compartment relies on SNARE proteins on both vesicle (v-SNARE) and the target membranes (t-SNARE). At present it is not clear how v-SNAREs are incorporated into transport vesicles. Here, we show that binding of ADP-ribosylation factor (ARF)-GTPase-activating protein (GAP) to ER-Golgi v-SNAREs is an essential step for recruitment of Arf1p and coatomer, proteins that together form the COPI coat. ARF-GAP acts catalytically to recruit COPI components. Inclusion of v-SNAREs into COPI vesicles could be mediated by direct interaction with the coat. The mechanisms by which v-SNAREs interact with COPI and COPII coat proteins seem to be different and may play a key role in determining specificity in vesicle budding.  相似文献   

18.
COPII proteins facilitate membrane transport from the endoplasmic reticulum (ER) to the Golgi. They are highly conserved, although there are variations in their subcellular localization across plant, animal and yeast cells. Such variations may be needed to suit the unique organization of the ER and Golgi in the different cell systems. Earlier bioinformatics analyses have indicated that the Arabidopsis nuclear genome may encode chloroplast isoforms of the cytosolic trafficking protein machineries, including COPI and COPII, for vesicular transport within chloroplasts. These analyses suggest the intriguing possibility that plants may have evolved or adapted COP-like proteins to suit membrane trafficking events within specialized organelles. Here, we discuss recent data on the distribution and activity of the product of the At5g18570 locus, which encodes a putative chloroplast isoform of Sar1, the GTPase that regulates COPII assembly on the surface of the ER. Evidence is accumulating that the protein is targeted to the chloroplasts, that it has GTPase activity and that it may have a role in thylakoid membrane development, supporting the possibility that COPII-like trafficking machinery may be active in chloroplasts.  相似文献   

19.
Cargo molecules have to be included in carrier vesicles of different forms and sizes to be transported between organelles. During this process, a limited set of proteins, including the coat proteins COPI, COPII and clathrin, carries out a programmed set of sequential interactions that lead to the budding of vesicles. A general model to explain the formation of coated vesicles is starting to emerge but the picture is more complex than we had imagined.  相似文献   

20.
The Saccharomyces cerevisiae maltose transporter is a 12-transmembrane segment protein that under certain physiological conditions is degraded in the vacuole after internalization by endocytosis. Previous studies showed that endocytosis of this protein is dependent on the actin network, is independent of microtubules, and requires the binding of ubiquitin. In this work, we attempted to determine which coat proteins are involved in this endocytosis. Using mutants defective in the heavy chain of clathrin and in several subunits of the COPI and the COPII complexes, we found that clathrin, as well as two cytosolic subunits of COPII, Sec23p and Sec24p, could be involved in internalization of the yeast maltose transporter. The results also indicate that endocytosis of the maltose transporter and of the alpha-factor receptor could have different requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号