首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To characterize antimicrobial resistance (AMR) and determine the seasonal prevalence of Escherichia coli O157:H7 isolated from commercial feedlots. Methods and Results: Escherichia coli O157:H7 were isolated from faecal and oral samples collected at monthly intervals from three commercial feedlots over a 12‐month period. A total of 240 isolates were characterized using pulsed‐field gel electrophoresis (PFGE) technique. A subset of 205 isolates was analysed for AMR using Sensititre system and AMR genes (tet, sul and str) by PCR. Seven PFGE clusters (≥90% Dice similarity) were identified, and two clusters common to all three feedlots were recovered year‐round. The majority of isolates (60%) were susceptible to all antimicrobials and were closely related (P < 0.001), whereas isolates with unique AMR patterns were not related. The prevalences of AMR from feedlots A, B and C were 69%, 1% and 38%, respectively. Resistance to tetracycline (69%) and sulfisoxazole (68%) was more prevalent in feedlot A than other two feedlots. The presence of strA and strB genes was linked in the majority of isolates, and tet(A) and tet(B), and sul1 and sul2 genes were present individually. Escherichia coli O157:H7 were genetically diverse during summer and fall, and strains from winter and spring months were more closely related. Conclusions: Antimicrobial resistance was more common in E. coli O157:H7 obtained from two of the three commercial feedlots, and the phenotypic expression of resistance was correlated with the presence of resistant genes. A highly diverse E. coli O157:H7 population was found during summer and fall seasons. Significance and Impact of the Study: Information would help understanding the dynamics of AMR in E. coli O157:H7 from commercial feedlots.  相似文献   

2.

Background

In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference.

Results

Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested.

Conclusions

This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.  相似文献   

3.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

4.
Gallbladders and rectal contents were collected from cattle (n = 933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

5.
Three strains (932, Ent-C9490, and SEA13B88) of Escherichia coli O157:H7 were used to determine the effectiveness of low-dose gamma irradiation for eliminating E. coli O157:H7 from apple juice or cider and to characterize the effect of inducing pH-dependent, stationary-phase acid resistance on radiation resistance. The strains were grown in tryptic soy broth with or without 1% dextrose for 18 h to produce cells that were or were not induced to pH-dependent stationary-phase acid resistance. The bacteria were then transferred to clarified apple juice and irradiated at 2°C with a cesium-137 irradiator. Non-acid-adapted cells had radiation D values (radiation doses needed to decrease a microbial population by 90%) ranging from 0.12 to 0.21 kGy. D values increased to 0.22 to 0.31 kGy for acid-adapted cells. When acid-adapted SEA13B88 cells were tested in five apple juice brands having different levels of suspended solids (absorbances ranging from 0.04 to 2.01 at 550 nm), radiation resistance increased with increasing levels of suspended solids, with D values ranging from 0.26 to 0.35 kGy. Based on these results, a dose of 1.8 kGy should be sufficient to achieve the 5D inactivation of E. coli recommended by the National Advisory Committee for Microbiological Criteria for Foods.  相似文献   

6.
The role of plasmid pO157 in biofilm formation was investigated using wild-type and pO157-cured Escherichia coli O157:H7 Sakai. Compared to the wild type, the biofilm formed by the pO157-cured mutant produced fewer extracellular carbohydrates, had lower viscosity, and did not give rise to colony morphology variants that hyperadhered to solid surfaces.Enterohemorrhagic Escherichia coli serotype O157:H7 is a major food-borne pathogen causing hemorrhagic colitis and the hemolytic-uremic syndrome (17). Many E. coli O157:H7 outbreaks have been associated with contaminated undercooked ground beef, vegetables, fruits, and sprouts (20, 31). One of the largest disease outbreaks occurred in Sakai City, Japan, in 1996 with nearly 8,000 confirmed cases. The E. coli isolate responsible for this outbreak, referred to as “Sakai,” is one of the best-characterized isolates and one of only three O157 strains for which the genome has been fully sequenced (8, 16). Because of its importance as a human pathogen and its characterization, Sakai was the focus of this investigation.There is significant phenotypic diversity among E. coli O157:H7 strains, including the ability to form biofilm. Previous studies show that certain E. coli O157:H7 strains form biofilm on various surfaces, and biofilm on food or food-processing surfaces can serve as a source or vehicle of contamination that may result in human infection (6, 18, 25). Biofilm is an organized and structured community of microorganisms that attaches to solid surfaces and contains cells embedded in an extracellular polymer matrix (4, 26). Exopolysaccharide (EPS) is a major component of the biofilm matrix and is required for the development of characteristic biofilm architecture (5, 29). Bacteria gain a variety of advantages from biofilm formation that include attachment, colonization, and protection from adverse environments (4, 11).E. coli O157:H7 carries a 92-kb virulence plasmid (pO157) encoding a number of putative virulence determinants, including ehxA, etpC to etpO, espP, katP, toxB, ecf, and stcE (31). However, the biological role of pO157 is not fully understood, and only 19 genes among the 100 open reading frames (ORFs) in pO157 have been characterized (2, 15). Our previous work indicates that pO157 is a colonization factor in cattle and may regulate several chromosomal genes (14, 24, 31).To investigate the role of pO157 in biofilm formation, we characterized the biofilm of wild-type E. coli O157:H7 strain Sakai and an isogenic pO157-cured Sakai (Sakai-Cu). Both strains were kindly provided by C. Sasakawa (University of Tokyo). Sakai-Cu was generated using a plasmid incompatibility method (27). This method is not prone to secondary mutations and requires minimal passage in laboratory medium. The mini-R plasmid pK2368, harboring a chloramphenicol (CM) resistance gene and being in the same plasmid incompatibility group as pO157, was introduced into wild-type Sakai by transformation. Transformants were isolated on LB agar containing CM and selected for loss of pO157 by agarose gel electrophoresis analysis. CM-resistant transformants were cured of pKP2368 by subculturing in LB broth without CM. The absence of pO157 was confirmed by Southern blot hybridization with a pO157-specific gene probe (derived from ecf1), and chromosomal DNA integrity was confirmed by pulsed-field gel electrophoresis (data not shown).Because E. coli O157:H7 strains are generally not strong biofilm producers, the condition most conducive to biofilm production, a fluorometric flow cell method, was used to compare separately grown Sakai and Sakai-CU (3). The biofilm cultivation systems consisted of seven parts: (i) medium reservoir, (ii) multichannel pump (205S; Watson Marlow, United Kingdom), (iii) bubble trap (BioSurface Technologies Co., Bozeman, MT), (iv) flow cell, (v) outflow reservoir, (vi) air pump (DrsFosterSmith, Rhinelander, WI), and (vii) flow meter (Gilmont, BC Group, St. Louis, MO). The flow cell was constructed from two rectangular acrylic plates that were 104 by 48 mm. Sidewalls (62 by 26 by 5 mm) were glued to the top plate to form an elongated hexagonal growth chamber. There were 56- by 20-mm square openings in the top and bottom rectangular plates that were sealed with 60- by 24-mm glass slides (Fisher, Pittsburgh, PA). The upper and lower plates were assembled with screws and sealed using a microseal B film (MJ Research, Waltham, MA). The flow cell volume was about 10.4 ml, the medium flow rate was 10.5 ml/h, and the hydraulic retention time was 1 h. Under these conditions, the linear surface velocity was about 80 mm/h at the center of the flow cell. The biofilm was grown with BGM2 medium (21). To prepare the inoculums, Sakai and Sakai-Cu were grown at 37°C in BGM2 medium to mid-exponential phase, and cells were harvested by centrifugation and resuspended in 0.85% NaCl. One hundred μl of the resuspended cell solution was inoculated from the effluent side of flow cells through a long stainless steel needle (Fisher, Pittsburgh, PA). The cells were incubated for at least 3 h without supplying fresh medium, and then fresh medium was supplied to the biofilm cultivation system at 30°C.At various times, the resulting biofilms were stained with a green fluorescent dye, wheat germ agglutinin (WGA)- Alexa Fluor 488 (Invitrogen, Carlsbad, CA), and analyzed using the Olympus FluoView confocal laser scanning microscopy system (Olympus, Tokyo, Japan). Using the Olympus FluoView software program, version 1.7b, for analysis, the fluorescence intensities of Sakai and Sakai-Cu biofilm matrices were each analyzed from >20 three-dimensional-complexity images. Fluorescence was greater for Sakai than for Sakai-Cu, with average values of 2,448 ± 668 and 2,022 ± 619, respectively (Student''s t test; P < 0.05). Overhead images from the Sakai-Cu strain biofilm revealed more-compact cell clusters than images from wild-type Sakai (Fig. 1A and B). Comparisons of images taken sideways indicated that the Sakai-Cu biofilms were not as thick as those of wild-type Sakai (Fig. 1C and D), and typical ratios were consistently 9:11, respectively (P < 0.05). A previous study demonstrated that the biofilm of a wcaF::can mutant of E. coli K-12, which is deficient in EPS production, lacked depth and complex architecture (5). Sakai-Cu showed a similar but less dramatic phenomenon. These observations indicated that pO157 influenced biofilm formation and architecture.Open in a separate windowFIG. 1.Wild-type Sakai (A and C) or Sakai-Cu (B and D) biofilms after 3 days of incubation. Both strains were grown at 30°C in an individual flow cell apparatus. The biofilm was stained with WGA-Alexa Fluor 488 and examined by confocal microscopy. Representative overhead (A and B) or sagittal (C and D) images are shown and were generated using the deconvolution software. Bar, 50 μm.To quantitatively compare Sakai and Sakai-Cu biofilms, the contents of each flow cell apparatus were collected at various times and analyzed for bacterial cell number, viscosity, and EPS production. Biofilms were harvested by a standard technique that preserves cell numbers and minimizes viscosity changes (9). Briefly, floating cells in the biofilm were carefully collected with a pipet, and the remaining cells were scraped from the flow cell apparatus with sterilized applicator sticks. Biofilm samples were collected on days 1, 3, 5, 8, and 12, and measurements were means ± standard deviations (SD) of at least triplicate measurements from separately grown biofilms. There was no significant difference in bacterial number (CFU/ml) from Sakai and Sakai-Cu biofilms at any of the times measured (data not shown). A Cannon-Fenske routine viscometer (Size 100; Cannon Instrument Co., Pennsylvania) was used to determine biofilm viscosity. The conversion constant was 0.015 cSt/s (mm2/s2), and viscosities were measured according to the manufacturer''s instructions. Briefly, the viscometer was aligned vertically in the holder, and the sample was charged into the viscometer tube until the sample reached the “F” mark in the tube. A suction bulb was used to draw the sample slightly above mark “E.” The sample was allowed to flow freely, and the efflux time was measured as the time for the meniscus to pass from mark “E” to mark “F.” Measurements were repeated at least six times, and the kinematic viscosity in mm2/s (cSt) of the samples was calculated by multiplying the efflux time in seconds by the viscometer constant. The viscosity of Sakai biofilm was dramatically increased after 8 days (P < 0.001), while there was no significant change in the viscosities of Sakai-Cu biofilms through day 12 (Fig. (Fig.22).Open in a separate windowFIG. 2.Comparison of Sakai and Sakai-Cu biofilm viscosity. Three or four separately grown biofilms were each harvested on the days indicated, and viscosity was measured using a Cannon-Fenske Routine viscometer.Bacterial EPS are associated with attachment to both inanimate surfaces and host cells (29). EPS can be categorized as extracellular carbohydrate complexes (ECC) that are loosely associated with cells and easily removed, referred to as slime (fraction I), or ECC that are closely associated with cells and removed only after heat treatment, referred to as capsule (fraction II) (22). No significant difference in ECC was observed until days eight and 12, when the level of total ECC produced from Sakai biofilms was significantly higher than that from the Sakai-Cu biofilms (P < 0.05) (Fig. (Fig.3).3). Also, by days eight and 12, levels of Sakai ECC fraction I, representing primarily secreted slime carbohydrates, were 5 and 10 times higher than Sakai-Cu ECC fraction I, respectively. These results correlated with the results of increased viscosity in Sakai biofilm samples that had aged for 8 or 12 days.Open in a separate windowFIG. 3.Comparison of Sakai and Sakai-Cu biofilm extracellular carbohydrate (ECC) production. ECC I was collected from cells by centrifugation, and ECC II was collected by centrifugation after heat treatment on each indicated day. Bar height represents total ECC production from each biofilm sample. The proportion of total ECC that was either ECC I (dark gray) or ECC II (light gray) is shown. Asterisks indicate significant differences between wild-type Sakai (Wt) and Sakai-Cu (Cu); day 8, P < 0.05; day 12, P < 0.001.Interestingly, during biofilm sampling, two colony morphology variants were isolated that are referred to here as sticky and mucoid. These variants were found only in wild-type Sakai biofilms that had aged for ≥8 days and were not found in Sakai-Cu biofilms even after screening of 104 colonies and even among biofilms aged for 18 days. The percentages of sticky and mucoid variants in Sakai biofilms ranged from 5 to 30% and 0 to 5%, respectively. The differences in colony morphology were readily distinguished, as shown in Fig. Fig.4.4. The sticky variant was raised in elevation and shinier than the Sakai parent strain but was not difference in size. When single bacterial colonies grown on agar plates were touched with a sterilized toothpick and that toothpick was gently lifted up, the colonies had a hyperadherence phenotype and elongated to approximately 1 cm between the plate and the toothpick. This phenomenon was unique to the sticky colony variants and was not observed among colonies of the parent Sakai strain (Fig. (Fig.4D).4D). The mucoid colony variants were convex in elevation and shiny in texture, had irregular colony shapes, and were larger than the Sakai parent strain but were not hyperadherent. The motility of variants was determined using 0.3% soft agar, and both sticky and mucoid variants exhibited 30- to 90%-reduced motility compared to the parent Sakai strain (data not shown). The characteristics of both sticky and mucoid variants were inherited, and the variant characteristics were maintained in laboratory subculture through 15 generations.Open in a separate windowFIG. 4.Colony morphologies of wild-type, mucoid, and sticky variants. The wild-type E. coli O157:H7 Sakai strain formed small, flat, and nonsticky colonies on LB agar (A). The mucoid variant formed irregular, large, shiny, mucoid, convex, and nonsticky colonies (B). The sticky variant formed small, slightly raised, and sticky colonies (C). The sticky variant adheres to a toothpick touched to the colony surface (D). Bar, 1 cm.It is known that mutation is a powerful mechanism of adaptation when bacteria are faced with environmental change (1). Like other bacterial variants, the sticky and mucoid phenotypic biofilm variants may provide a survival advantage in specific niches (10, 19). Pseudomonas aeruginosa is a well-known biofilm model, and colony morphology variants are a common biofilm-related phenomenon. Both reduced-motility and hyperadherence variants have been described (10) and have characteristics similar to those of the E. coli O157:H7 biofilm variants described here. However, unlike the P. aeruginosa biofilm variants, the sticky and mucoid Sakai variants were not smaller, rougher, or more wrinkled than the parent colony.Although it is possible that the changes measured in biofilm formation and the generation of hyperadherent variants were not due to the plasmid, it is highly unlikely. The method of plasmid curing by incompatibility is gentle and is not prone to secondary mutation. A powerful and common approach to address possible secondary mutations is complementation; however, it was not used here because reintroduction of the plasmid requires the manipulation of a very large piece of DNA (92 kb) and the procedure itself is likely to introduce mutation. Also, reintroduction of the large 92-kb pO157 plasmid would require antibiotic resistance for efficient selection, and this may influence biofilm formation.Many regulatory mechanisms are involved in biofilm formation (7, 12, 13, 28, 30, 32). Among those mechanisms, the relationship between biofilm formation and acid resistance is well known. Biofilm formation is upregulated after the deletion of the gad or hde gene, which allows bacteria to survive under acidic conditions (12). Previously we showed that an isogenic pO157-cured strain of E. coli O157:H7, ATCC 43894, enhanced acid resistance through increased expression of Gad (14). Similarly, Sakai-Cu has enhanced acid resistance compared to wild-type Sakai (data not shown and J. Y. Lim, B. Hong, H. Sheng, S. Shringi, R. Kaul, and C. J. Hovde, submitted for publication). The link between increased acid resistance and reduced biofilm formation, reduced ESP production, reduced viscosity, and lack of colony morphology variants was not explored here. Comparisons of biofilm formation were not made between these two strains because neither wild-type E. coli O157:H7 ATCC 43894 nor its plasmid-cured strain form significant biofilm under the laboratory conditions tested (data not shown).Two pO157-cured E. coli O157 strains (ATCC 43894 and Sakai) do not colonize cattle as well as their wild-type counterpart (14, 24). The mechanism for this difference may be related to pO157 encoding a set of putative type II secretion genes, etpC to etpM, etpO, and etpS, and these etp genes may be associated with protein secretion required for efficient adherence (23). Tatsuno et al. reported that the toxB gene encoded on pO157 is required for the full epithelial cell adherence phenotype (27). These results may relate to the defect of Sakai-Cu in biofilm formation.In conclusion, this is the first report that pO157 affects biofilm formation of E. coli O157:H7 Sakai through increased EPS production and generation of hyperadherent variants. Further study of biofilm formation under a variety of conditions and comparisons of Sakai with other E. coli O157:H7 strains will be important for understanding the relationship between biofilm formation and E. coli O157:H7 virulence and survival on foods and in the farm environment.  相似文献   

7.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.  相似文献   

8.
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

9.
Persistence of Escherichia coli O157:H7 and its mutants in soils   总被引:1,自引:0,他引:1  
Ma J  Ibekwe AM  Yi X  Wang H  Yamazaki A  Crowley DE  Yang CH 《PloS one》2011,6(8):e23191
The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 stx 2 ) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples.  相似文献   

10.
Escherichia coli O157:H7 is only occasionally isolated from healthy swine, but some experimentally infected animals will shed the organism in their feces for at least 2 months. Potential explanations for the paucity of naturally occurring infections in swine, as compared to cattle, include a lack of animal-to-animal transmission so that the organism cannot be maintained within a herd, a high infectious dose, or herd management practices that prevent the maintenance of the organism in the gastrointestinal tract. We hypothesized that donor pigs infected with E. coli O157:H7 would transmit the organism to naïve pigs. We also determined the infectious dose and whether housing pigs individually on grated floors would decrease the magnitude or duration of fecal shedding. Infected donor pigs shedding <104 CFU of E. coli O157:H7 per g transmitted the organism to 6 of 12 naïve pigs exposed to them. The infectious dose of E. coli O157:H7 for 3-month-old pigs was approximately 6 × 103 CFU. There was no difference in the magnitude and duration of fecal shedding by pigs housed individually on grates compared to those housed two per pen on cement floors. These results suggest that swine do not have an innate resistance to colonization by E. coli O157:H7 and that they could serve as a reservoir host under suitable conditions.Escherichia coli O157:H7 and other serotypes of Shiga toxigenic E. coli (STEC) cause an estimated 110,000 cases of human illness yearly in the United States (26). Most cases are thought to occur as a result of the ingestion of contaminated food or water, although direct contacts with animals and person-to-person transmission have also been documented (4). Cattle are considered to be the major reservoir of STEC, and the prevalence of E. coli O157:H7 in the U.S. herd ranges from 2 to 28%, depending on the culture techniques used, the age of the animals, and the season in which samples are collected (10, 12, 15, 17, 29, 33). E. coli O157:H7 has also been recovered from other ruminants such as deer (22, 30) and sheep (24). E. coli O157:H7 has occasionally been isolated from nonruminant animals such as wild birds (32) and raccoons (18), but the bulk of the data suggests that the prevalence of STEC is greater in ruminants than it is in other animals.In the last several years, there have been reports that E. coli O157:H7 has been isolated from healthy swine in Japan, The Netherlands, Sweden, Canada, Norway, and the United States (11, 13, 19, 20, 27; C. L. Gyles, R. Friendship, K. Ziebell, S. Johnson, I. Yong, and R. Amezcua, Proc. 2002 Congr. Int. Pig Vet. Soc., abstr. 191). The prevalence of the organism in these studies is generally low (0.1 to 6%), and no human outbreaks have been specifically traced back to pork, although sausage containing both beef and pork was implicated as the source of human infection in at least one outbreak (28). In Chile, the prevalence of E. coli O157:H7 reported from pigs (10.8%) was greater than that reported from cattle (2.9%), suggesting that swine may be an important source of this organism in some countries (3). Previously, we have shown that some market-weight pigs experimentally infected with E. coli O157:H7 will shed the organism for at least 2 months (2). These animals do not become clinically ill, and the magnitude and duration of fecal shedding of E. coli O157:H7 are reminiscent of those seen in experimentally infected ruminants (6, 7). This suggests that swine have the biological potential to emerge as a reservoir for E. coli O157:H7 and other STEC strains pathogenic for humans. In order for swine to serve as a reservoir host, not only must the organism colonize the gastrointestinal tract of individual animals, it must also be transmitted from colonized animals to naïve animals to be maintained within the herd. In addition, the infectious dose must be of such a magnitude that a natural infection could be perpetuated within the herd. We hypothesized that E. coli O157:H7 would be transmitted from infected donor pigs to naïve pigs at levels that could be sustained in a natural infection. In addition, we determined the infectious dose of in vitro-grown E. coli O157:H7 for 3-month-old pigs and determined whether housing pigs individually on raised decks or in groups on cement floors affected the magnitude and duration of fecal shedding in infected animals.(A preliminary report of this work was presented at the International Symposium on Shiga Toxin-Producing E. coli, Kyoto, Japan, 2000, and Edinburgh, Scotland, 2003.)  相似文献   

11.
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.Enterohemorrhagic Escherichia coli is associated with diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans (31). E. coli serotype O157:H7 predominates in epidemics and sporadic cases of enterohemorrhagic E. coli-related infections in the United States, Canada, Japan, and the United Kingdom (12). Cattle are considered the most important reservoir of E. coli O157:H7 (10, 24, 37, 41), and foods contaminated with bovine feces are thought to be the most common source of human infection with this pathogen (27, 33). The two most important virulence factors of the organism are the production of one or more Shiga toxins (Stx) (6, 20, 32) and the ability to attach to and efface microvilli of host intestinal cells (AE). Stx genes are encoded by temperate bacteriophage inserted in the bacterial chromosome, and genes responsible for the AE phenotype are located on the locus of enterocyte effacement (LEE) as well as other pathogenicity islands (4, 17). All E. coli O157:H7 strains also possess a large plasmid which is thought to play a role in virulence (10, 40, 42).Octamer-based genome scanning (OBGS) was first used to show that E. coli O157 strains from the United States and Australia could be subdivided into two genetically distinct lineages (21, 22, 46). While both E. coli O157:H7 lineages are associated with human disease and are isolated from cattle, there is a bias in the host distribution between the two lineages, with a significantly higher proportion of lineage I strains isolated from humans than lineage II strains. Several recent studies have shown that there are inherent differences in gene content and expression between populations of lineage I and lineage II E. coli O157:H7 strains. Lejeune et al. (26) reported that the antiterminator Q gene of the stx2-converting bacteriophage 933W was found in all nine OBGS lineage I strains examined but in only two of seven lineage II strains, suggesting that there may be lineage-specific differences in toxin production. Dowd and Ishizaki (9) used DNA microarray analysis to examine expression of 610 E. coli O157:H7 genes and showed that lineage I and lineage II E. coli O157:H7 strains have evolved distinct patterns of gene expression which may alter their virulence and their ability to survive in different microenvironments and colonize the intestines of different hosts (9, 28, 38).The observations of lineage host bias have been supported and extended by studies using a six-locus-based multiplex PCR termed the lineage-specific polymorphism assay (LSPA-6) (46). However, Ziebell et al. (48) have recently shown that not all LSPA-6 types within lineage II are host biased; e.g., LSPA-6 type 211111 isolation rates from humans and cattle were significantly different from those of other lineage II LSPA-6 types. Therefore, a clearer definition is required of not only the differences between lineages but also the differences among clonal groups within lineages.The genome sequences of two E. coli O157:H7 strains, Sakai and EDL933 (14, 36), have been determined; however, both of these strains are of lineage I, and there are presently no completed and fully annotated genome sequences available for lineage II strains. In our laboratory, comparative studies utilizing suppression subtractive hybridization (SSH) and comparative genomic hybridization revealed numerous potential virulence factors that are conserved in lineage I strains and that are rare or absent in lineage II strains (42, 47). In this study, we have used SSH to identify genomic regions present in E. coli O157:H7 lineage II strains that are absent from lineage I strains. We wished to examine the distribution of these novel gene segments in E. coli O157:H7 strains and gain insight into their origins and functions. We also attempted to identify molecular markers specific to lineage II strains as well as other markers that would be useful in the genetic subtyping or molecular fingerprinting of E. coli O157:H7 strains in population and epidemiological studies (25). This information may be helpful in the identification of genotypes of the organism associated with specific phenotypes of both lesser and greater virulence (29).  相似文献   

12.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

13.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds.  相似文献   

14.
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli O157:H7 (J. L. Bono, T. P. Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H. Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047–2062, 2012) and additionally defined subgroups within four of those lineages. This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with previously identified E. coli O157:H7 genotypes identified by other methods and were strongly associated with carriage of specific Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically identifies biologically relevant lineages within E. coli O157:H7.  相似文献   

15.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   

16.
Escherichia coli O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans, and its major reservoir is healthy cattle. An F-like 92-kb plasmid, pO157, is found in most E. coli O157:H7 clinical isolates, and pO157 shares sequence similarities with plasmids present in other enterohemorrhagic E. coli serotypes. We compared wild-type (WT) E. coli O157:H7 and an isogenic ΔpO157 mutant for (i) growth rates and antibiotic susceptibilities, (ii) survival in environments with various acidity, salt, or heat conditions, (iii) protein expression, and (iv) survival and persistence in cattle following oral challenge. Growth, metabolic reactions, and antibiotic resistance of the ΔpO157 mutant were indistinguishable from those of its complement and the WT. However, in cell competition assays, the WT was more abundant than the ΔpO157 mutant. The ΔpO157 mutant was more resistant to acidic synthetic bovine gastric fluid and bile than the WT. In vivo, the ΔpO157 mutant survived passage through the bovine gastrointestinal tract better than the WT but, interestingly, did not colonize the bovine rectoanal junction mucosa as well as the WT. Many proteins were differentially expressed between the ΔpO157 mutant and the WT. Proteins from whole-cell lysates and membrane fractions of cell lysates were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Ten differentially expressed ~50-kDa proteins were identified by quadrupole-time of flight mass spectrometry and sequence matching with the peptide fragment database. Most of these proteins, including tryptophanase and glutamate decarboxylase isozymes, were related to survival under salvage conditions, and expression was increased by the deletion of pO157. This suggested that the genes on pO157 regulate some chromosomal genes.  相似文献   

17.
We determined the prevalence of Escherichia coli O157:H7 in organically and naturally raised beef cattle at slaughter and compared antibiotic susceptibility profiles of the isolates to those of isolates from conventionally raised beef cattle. The prevalences of E. coli O157:H7 were 14.8 and 14.2% for organically and naturally raised cattle, respectively. No major difference in antibiotic susceptibility patterns among the isolates was observed.Many cattle producers have adopted production methods termed niche marketing to meet consumer demand for safe and healthy beef. The two main niches for beef cattle producers are organic and natural production (3). Organic beef cattle production, regulated by the U.S. Department of Agriculture, requires feeding with certified organic feed (16) and raising cattle without the use of antibiotics, hormones, and other veterinary products (3). Guidelines for producers to label the product as “natural” differ among natural beef programs, and such programs are administered and regulated by the company or organization that owns the brand name rather than the U.S. Department of Agriculture (11). Natural production guidelines often include a complete restriction on the use of antibiotics and growth-promoting hormones, but unlike guidelines for organic production, they allow feed from nonorganic sources (11). Escherichia coli O157:H7 is a major food-borne pathogen that causes outbreaks of hemorrhagic enteritis, which often leads to hemolytic uremic syndrome in children and the elderly (10). Cattle are major reservoirs of E. coli O157:H7, which colonizes the hindgut, specifically the rectoanal mucosal region. Cattle feces are the major source of food and water contamination (10). The impact of organic production methods on the prevalence of food-borne pathogens, including E. coli O157:H7 and Campylobacter spp. in dairy cattle (7, 14) and Campylobacter and Salmonella spp. in chickens (6, 19), has been studied previously. However, there is no published study on the prevalence of E. coli O157:H7 in organically and naturally raised beef cattle. Additionally, nothing is known regarding the effects of organic and natural production methods on the antibiotic susceptibilities of E. coli O157:H7 in beef cattle. Our objectives were to determine the prevalence of E. coli O157:H7 in the feces of organically and naturally raised beef cattle at slaughter and compare the antibiotic susceptibilities of isolates from organically, naturally, and conventionally raised beef cattle.Cattle included in this study were from three types of production systems, organic, natural, and conventional. Organically raised beef cattle were from farms that were certified by the National Organic Program (17). The naturally raised beef cattle were from farms that were certified by the All Natural Source Verified Beef Program (17). The collection of samples from these cattle occurred in an abattoir. Samples from conventionally raised cattle from two feedlots were collected in a different abattoir so that the antibiotic susceptibilities of their isolates could be compared with those of isolates from organically and naturally raised cattle. Fecal samples were obtained by cutting open the rectum and spooning out the contents. The mucosa of the rectum was then rinsed with water until free of visible fecal material and swabbed with a sterile foam-tipped applicator (4). The isolation and identification of E. coli O157 and PCR detection of major virulence genes (eae, stx1, stx2, hlyA, and fliC) were carried out as described by Reinstein et al. (13). A subset of 60 isolates, 20 (10 from fecal samples and 10 from rectoanal mucosal swabs [RAMS]) from each production system, was randomly chosen to determine the antibiotic susceptibility patterns by the broth microdilution method (9). The antibiotics (all from Sigma-Aldrich) tested were amikacin, amoxicillin (amoxicilline), ampicillin, apramycin, bacitracin, cefoxitin, ceftazidime, ceftriaxone, cephalothin (cefalotin), chloramphenicol, chlortetracycline, ciprofloxacin, enrofloxacin, erythromycin, florfenicol, gentamicin, kanamycin, lincomycin, monensin, nalidixic acid, neomycin, norfloxacin, novobiocin, oxytetracycline, penicillin, rifampin (rifampicin), spectinomycin, streptomycin, tetracycline, tilmicosin, trimethoprim, tylosin, and vancomycin. The MIC was defined as the lowest concentration of an antibiotic that prevented visible growth of the organism. Each concentration of the antibiotic compound was duplicated in the microtiter plate, and the MIC determination was repeated with a different inoculum preparation. Logistic regression was performed using the PROC GENMOD procedure in the SAS system (SAS Institute, Cary, NC) to compare the prevalences of E. coli O157:H7 (with binomial distribution of outcomes) in fecal samples, RAMS samples, and fecal or RAMS samples (overall animal level prevalence). The MICs of antibiotics for E. coli O157:H7 isolates were analyzed using a nonparametric survival test in the PROC LIFETEST program of SAS to determine the effects of the production system (natural, organic, or conventional). Data were right censored when necessary (when the organism was resistant to the highest concentration evaluated). The Wilcoxon test was utilized to determine the effect of the production system on MICs.Samples from a total of 553, 506, and 322 organically, naturally, and conventionally raised cattle, respectively, were collected. In organically raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 24.4% across sampling days, with an average of 9.3%, and the prevalence in RAMS ranged from 0 to 30.9%, with an average of 8.7% (Fig. (Fig.1).1). In naturally raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 20.3%, with an average of 7.2%, and the prevalence in RAMS ranged from 0 to 23.8%, with an average of 8.9% (Fig. (Fig.1).1). In both organically and naturally raised cattle, the prevalence (total) detected by both sampling methods together was greater (P < 0.05) than the prevalence detected by either method alone (Fig. (Fig.1).1). Samples (either feces or RAMS) from 36 (11.2%) of 322 conventionally raised feedlot cattle were culture positive for E. coli O157:H7. The fecal prevalence of E. coli O157:H7 was 6.5%, and the prevalence determined by the RAMS sampling method was 7.1%. Most isolates (66.7% from organically raised beef cattle and 77.8% from naturally raised beef cattle) were positive for eae, stx2, hlyA, and fliC but negative for stx1. The stx2 gene was present in 100 and 95% of isolates from organically and naturally raised cattle, respectively. The prevalences of E. coli O157:H7 that we observed in organically and naturally raised beef cattle were similar to the previously reported prevalence in conventionally raised cattle (1). Our study did not include a statistical comparison of the prevalence data because of a number of differences, particularly in diet, among the organic, natural, and conventional production systems. Organically and naturally raised cattle are either required to graze a pasture or fed a forage-based diet. Although conflicting data exist (1), studies have shown that cattle fed a forage diet have both higher levels and longer durations of fecal shedding of E. coli O157:H7 than cattle fed a grain diet (18).Open in a separate windowFIG. 1.Prevalences of E. coli O157:H7 in organically and naturally raised beef cattle at slaughter. For each production system, bars not labeled with the same letter represent significantly different levels at P of <0.05.None of the tested isolates from the three production systems were susceptible to bacitracin, lincomycin, monensin, novobiocin, tilmicosin, tylosin, and vancomycin (MICs > 50 μg/ml). The MICs of 12 antibiotics (amikacin, apramycin, cefoxitin, ceftriaxone, gentamicin, kanamycin, nalidixic acid, neomycin, penicillin, rifampin, streptomycin, and tetracycline) for isolates collected from different production systems were significantly different (P < 0.05). MICs of gentamicin and neomycin for E. coli O157:H7 isolates from conventionally raised cattle were higher (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). However, MICs of amikacin, apramycin, cefoxitin, ceftriaxone, kanamycin, nalidixic acid, penicillin, rifampin, and tetracycline for isolates from conventionally fed cattle were lower (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). Among the 60 isolates tested for antibiotic susceptibilities, 6 isolates (10%) were susceptible to all antibiotics included in the study, excluding the seven antibiotics to which all isolates were resistant. Forty-two isolates (70%) were resistant to one antibiotic (MIC, >50 μg or >50 IU/ml), nine isolates (15%) were resistant to two antibiotics, and two isolates (3%) were resistant to five antibiotics. One isolate from the organically raised cattle group was resistant to 10 (amoxicillin, ampicillin, cefoxitin, cephalothin, chloramphenicol, florfenicol, oxytetracycline, penicillin, streptomycin, and tetracycline) of the 26 antibiotics that were inhibitory to other isolates. We have presented the data as the median MICs for each production system. In some instances, the median values were the same but the actual MIC data differed between production systems. This effect occurred because the data were right censored if isolates were not susceptible at 50 μg or 50 IU/ml. If more isolates from a particular production system than from another are censored, it may lead to statistical differences. This pattern justifies the use of survival analysis for this type of data. There were differences between MICs of many antibiotics (cefoxitin, ceftriaxone, gentamicin, nalidixic acid, neomycin, penicillin, rifampin, and tetracycline) for isolates from organically raised cattle and conventionally raised cattle. Similarly, there were differences between MICs of many antibiotics (amikacin, apramycin, ceftriaxone, kanamycin, nalidixic acid, and rifampin) for isolates from naturally raised cattle and conventionally raised cattle. For many of these antibiotics, MICs for isolates from organically or naturally raised cattle were greater than those for isolates from conventionally raised cattle. Resistance genes can be transferred among the enteric pathogen populations in food animals and humans (8), and it is possible that resistance genes from other bacteria in the gastrointestinal system of cattle may be acquired by E. coli O157:H7. For cattle, heavy metals like copper and zinc, which are also antimicrobial, are included in diets at concentrations in excess of the nutritional requirements, often replacing conventional antibiotics, to achieve growth promotion (5). Feeding with metals also results in the emergence of bacterial populations resistant to metals (5), which in some instances may lead to resistance to antibiotics. Mechanisms of resistance to copper at concentrations above those usually tolerated by normal cellular processes have been found on plasmids linked to resistance to antibiotics in some bacteria (5). Therefore, it is possible that isolates from organically or naturally raised cattle that are not exposed to antibiotics still may become resistant to antibiotics.

TABLE 1.

MICs of antimicrobials for E. coli O157:H7 isolates from conventionally, naturally, and organically raised beef cattle
Antibiotic agentMedian MICa (95% confidence interval) for isolates from:
P value (Wilcoxon test)
Conventionally raised cattle (n = 20)Naturally raised cattle (n = 20)Organically raised cattle (n = 20)
Amikacin2.5 (2.3-3.1)*3.9 (3.1-4.7)†2.7 (2.3-3.1)*<0.01
Apramycin9.4 (8.6-9.4)*12.5 (9.4-15.6)†6.3 (6.3-9.4)*<0.01
Cefoxitin7.8 (6.3-7.8)*7.8 (6.3-9.4)*†8.2 (7.8-10.9)†0.08
Ceftriaxone0.04 (0.04-0.05)*0.05 (NE)†0.05 (NE)†0.02
Gentamicin0.6 (0.4-0.6)†0.6 (0.5-0.8)†0.4 (0.3-0.5)*<0.01
Kanamycin3.0 (2.3-3.1)*3.9 (2.7-4.7)†2.3 (2.0-3.1)*<0.01
Nalidixic acid3.1 (3.1-3.9)*4.7 (3.9-6.3)†4.7 (3.1-6.3)†<0.01
Neomycin1.6 (1.2-1.6)†1.6 (1.2-2.3)†1.0 (0.8-1.2)*<0.01
Penicillin50.0 (NE)*50.0 (NE)*†50.0 (NE)†0.02
Rifampin6.3 (5.5-6.3)*6.3 (NE)†6.3 (6.3-12.5)†<0.01
Streptomycin9.4 (9.4-12.5)*†9.4 (9.4-12.5)†7.8 (6.3-9.4)*0.04
Tetracycline3.1 (NE)*3.1 (3.1-4.7)*†4.7 (3.1-4.7)†0.02
Open in a separate windowaMICs of all antibiotics are expressed as micrograms per milliliter, except those of penicillin, which are in international units per milliliter. For each row, values not labeled with the same symbol (* or †) are significantly different (P < 0.05) as determined by survival analysis (Wilcoxon test). NE, not estimable.Information on the prevalence and antibiotic susceptibilities of food-borne pathogens in organic or natural livestock production systems is limited and variable. In a study of organic and conventional dairy cattle farms, conventional farms were found to be more likely than organic farms to have at least one Salmonella isolate resistant to antibiotics (12). Kuhnert et al. (7) observed no difference between the prevalences of E. coli O157:H7 in samples from organic and conventional dairy farms. Sato et al. reported that E. coli isolates from conventional dairies had significantly higher rates of resistance to certain antibiotics than isolates from organic dairies (15). Cho et al. (2) compared the antibiotic susceptibilities of Shiga toxin-producing O157 and non-O157 isolates from organic and conventional dairy farms and concluded that there was no overall significant difference in resistance between isolates from the two production systems.Although organic and natural beef production systems are becoming popular, little is known about the effects of these production systems on food-borne pathogens. Because the safety of the food supply is crucial, further investigation into these production systems and their potential for altering the risk of human illness is warranted. Our study found similar prevalences of E. coli O157:H7 in the feces of organically and naturally raised beef cattle, and our prevalence estimates for cattle in these types of production systems are similar to those reported previously for conventionally raised feedlot cattle.  相似文献   

18.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

19.
Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 104 CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.  相似文献   

20.
Using cultivation, immunofluorescence microscopy, and scanning electron microscopy, we demonstrated the presence of viable enterohemorrhagic Escherichia coli O157:H7 not only on the outer surfaces but also in the inner tissues and stomata of cotyledons of radish sprouts grown from seeds experimentally contaminated with the bacterium. HgCl2 treatment of the outer surface of the hypocotyl did not kill the contaminating bacteria, which emphasized the importance of either using seeds free from E. coli O157:H7 in the production of radish sprouts or heating the sprouts before they are eaten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号