首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quantitative proteomics is an important tool to study biological processes, but so far it has been challenging to apply to zebrafish. Here, we describe a large scale quantitative analysis of the zebrafish proteome using a combination of stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS). Proteins derived from the fully labeled fish were used as a standard to quantify changes during embryonic heart development. LC-MS-assisted analysis of the proteome of activated leukocyte cell adhesion molecule zebrafish morphants revealed a down-regulation of components of the network required for cell adhesion and maintenance of cell shape as well as secondary changes due to arrest of cellular differentiation. Quantitative proteomics in zebrafish using the stable isotope-labeling technique provides an unprecedented resource to study developmental processes in zebrafish.Over the past years, mass spectrometry-based proteomics has been widely used to analyze complex biological samples (1). Although the latest generation of MS instrumentation allows proteome-wide analysis, protein quantitation is still a challenge (2, 3). Metabolic labeling using stable isotopes has been used for almost a century. Today, the most commonly used techniques for relative protein quantification are based on 15N labeling and stable isotope labeling by amino acids in cell culture (SILAC)1 (4, 5). SILAC was initially developed for cell culture experiments, and recent approaches extended labeling to living organisms, including bacteria (6), yeast (7), flies (8), worms (9), and rodents (10, 11). In addition, several pulsed SILAC (also known as dynamic SILAC) experiments were performed to assess protein dynamics in cell culture and living animals (1215).The zebrafish (Danio rerio) has proved to be an important model organism to study developmental processes. It also serves as a valuable tool to investigate basic pathogenic principles of human diseases such as cardiovascular disorders and tissue regeneration (16). So far, most researchers rely on immunohistochemistry and Western blots for semi-quantitative protein analysis, an approach that is hampered by the paucity of reliable antibodies in zebrafish. Proteomics approaches that depend on two-dimensional gel approaches (1719) have not gained wide popularity because of issues with workload, reproducibility, and sensitivity (20, 21).Another approach for protein quantitation is the chemical modification of peptides, and so far several isobaric tagging methods, including ICAT (22), iTRAQ (23), 18O (24), and dimethyl labeling (25), have been proven to be successful methods.Recently, a quantitative phosphopeptide study based on dimethyl labeling in zebrafish showed the consequences of a morpholino-based kinase knockdown (26). However, each chemical modification bears the risk of nonspecific and incomplete labeling, which complicates mass spectrometric data interpretation.Alternatively, a metabolic labeling study with stable isotopes was recently performed on adult zebrafish by the administration of a mouse diet containing [13C6]lysine (Lys-6) (27). Feeding adult zebrafish with the Lys-6-containing mouse chow leads to an incorporation rate of 40%, and SILAC labeling was used to investigate protein and tissue turnover.Here, we have developed a SILAC fish diet made in-house for the complete SILAC labeling of zebrafish. We established a Lys-6-containing diet as a universal fish food for larval and adult zebrafish. The method allows accurate quantitation of large numbers of proteins, and we proved our approach by the analysis of embryonic heart development. In addition, we investigated the consequences of the morpholino-based activated leukocyte cell adhesion molecule (ALCAM) knockdown during development and identified the lipid anchor protein Paralemmin as a down-regulated protein during heart development. Our approach yielded a huge resource of protein expression data for zebrafish development and provided the basis for more refined studies depending on accurate SILAC protein quantification.  相似文献   

3.
Stable isotope labeling by amino acids in cell culture (SILAC) provides a straightforward tool for quantitation in proteomics. However, one problem associated with SILAC is the in vivo conversion of labeled arginine to other amino acids, typically proline. We found that arginine conversion in the fission yeast Schizosaccharomyces pombe occurred at extremely high levels, such that labeling cells with heavy arginine led to undesired incorporation of label into essentially all of the proline pool as well as a substantial portion of glutamate, glutamine, and lysine pools. We found that this can be prevented by deleting genes involved in arginine catabolism using methods that are highly robust yet simple to implement. Deletion of both fission yeast arginase genes or of the single ornithine transaminase gene, together with a small modification to growth medium that improves arginine uptake in mutant strains, was sufficient to abolish essentially all arginine conversion. We demonstrated the usefulness of our approach in a large scale quantitative analysis of proteins before and after cell division; both up- and down-regulated proteins, including a novel protein involved in septation, were successfully identified. This strategy for addressing the “arginine conversion problem” may be more broadly applicable to organisms amenable to genetic manipulation.Stable isotope labeling by amino acids in cell culture (SILAC)1 (1) is one of the key methods for large scale quantitative proteomics (2, 3). In SILAC experiments, proteins are metabolically labeled by culturing cells in media containing either normal (“light”) or heavy isotope-labeled amino acids, typically lysine and arginine. Peptides derived from the light and heavy cells are thus distinguishable by mass spectrometry and can be mixed for accurate quantitation. SILAC is also possible at the whole-organism level (4).An inherent problem in SILAC is the metabolic conversion of labeled arginine to other amino acids, as this complicates quantitative analysis of peptides containing these amino acids. Arginine conversion to proline is well described in mammalian cells, although the extent of conversion varies among cell types (5). When conversion is observed, typically 10–25% of the total proline pool is found to contain label (611). Arginine conversion has also been reported in SILAC experiments with budding yeast Saccharomyces cerevisiae (3, 12, 13).Because more than 50% of tryptic peptides in large data sets contain proline (7), it is not practical simply to disregard proline-containing peptides during quantitation. Several methods have been proposed to either reduce arginine conversion or correct for its effects on quantitation. In some cell types, arginine conversion can be prevented by lowering the concentration of exogenous arginine (6, 1416) or by adding exogenous proline (9). However, these methods can involve significant changes to growth media and may need to be tested for each experimental condition used. Given the importance of arginine in many metabolic pathways, careful empirical titration of exogenous arginine concentration is required to minimize negative effects on cell growth (14). In addition, low arginine medium can lead to incomplete arginine labeling, although the reasons for this are not entirely clear (7). An alternative strategy is to omit labeled arginine altogether (3, 13, 17), but this reduces the number of quantifiable peptides. Correction methods include using two different forms of labeled arginine (7) or computationally compensating for proline-containing peptides (11, 12, 18). Ultimately, none of these methods address the problem at its root, the utilization of arginine in cellular metabolism.To develop a differential proteomics work flow for the fission yeast Schizosaccharomyces pombe, we sought to adapt SILAC for use in this organism, a widely used model eukaryote with excellent classical and reverse genetics. Here we describe extremely high conversion of labeled arginine to other amino acids in fission yeast as well as a novel general solution to the problem that should be applicable to other organisms. As proof of principle, we quantitated changes in protein levels before and after cell division on a proteome-wide scale. We identified both up- and down-regulated proteins, including a novel protein involved in septation.  相似文献   

4.
5.
Lysine succinylation is a newly identified protein post-translational modification pathway present in both prokaryotic and eukaryotic cells. However, succinylation substrates and regulatory enzyme(s) remain largely unknown, hindering the biological study of this modification. Here we report the identification of 2,580 bacterial lysine succinylation sites in 670 proteins and 2,803 lysine acetylation (Kac) sites in 782 proteins, representing the first lysine succinylation dataset and the largest Kac dataset in wild-type E. coli. We quantified dynamic changes of the lysine succinylation and Kac substrates in response to high glucose. Our data showed that high-glucose conditions led to more lysine-succinylated proteins and enhanced the abundance of succinyllysine peptides more significantly than Kac peptides, suggesting that glucose has a more profound effect on succinylation than on acetylation. We further identified CobB, a known Sir2-like bacterial lysine deacetylase, as the first prokaryotic desuccinylation enzyme. The identification of bacterial CobB as a bifunctional enzyme with lysine desuccinylation and deacetylation activities suggests that the eukaryotic Kac-regulatory enzymes may have enzymatic activities on various lysine acylations with very different structures. In addition, it is highly likely that lysine succinylation could have unique and more profound regulatory roles in cellular metabolism relative to lysine acetylation under some physiological conditions.Lysine acetylation (Kac)1 is a dynamic and evolutionarily conserved post-translational modification (PTM) that is known to be involved in the regulation of diverse cellular processes (19). The status of this modification is controlled by two groups of enzymes with opposing enzymatic activities, lysine acetyltransferases that add an acetyl group to the lysine (Lys or K) residue, and histone lysine deacetylases (HDACs) that remove the acetyl group (1016). HDACs are grouped into several categories (17): class I (HDAC1, -2, -3, and -8), class IIA (HDAC4, -5, -7, and -9), class IIB (HDAC6 and -10), class III (Sirt1–7), and class IV (HDAC11). The weak deacetylation activities of some HDACs (e.g. Sirt4–7 and HDAC4, -5, and -7–11), as well as the demonstration of Sirt5 as a desuccinylation and demalonylation enzyme, suggest that some HDAC enzymes have activities that are independent of acetylation (18, 19).For a long period of time, lysine acetylation was considered as a protein modification that was restricted to nuclei (20). The identification of cytosolic Kac substrates and the localization of some HDACs outside nuclei suggest a non-nuclear function of lysine acetylation (13, 21, 22). The first proteomic screening identified hundreds of substrate proteins in cytosolic and mitochondrial fractions and demonstrated high abundance of Kac in mitochondrial proteins and metabolic enzymes (23). This result implies that Kac has diverse non-nuclear roles and can regulate functions of metabolism and mitochondria (23). Since then, we and others have extensively characterized the cellular acetylome (5, 9, 2426).The lysine succinylation (Ksucc) and lysine malonylation pathways are two PTM pathways that were recently identified and comprehensively validated in both bacterial and mammalian cells, with multiple substrate proteins identified, using HPLC-MS/MS, co-elution of synthetic peptides, isotopic labeling, Western blotting analysis using pan-anti-Ksucc antibodies, and proteomics analysis (18, 27). We also showed that Ksucc is present in core histones (29). In yeast histones, some Ksucc sites are located in regions where histones make close contact with DNA, suggesting that Ksucc sites may be involved in gene regulation by changing the chromatin structure (29). We then found that Sirt5, a member of the class III family of HDACs, can function as a desuccinylation enzyme in vitro and in vivo (18, 19). In a recent study, we revealed that Sirt5 is a key regulatory enzyme of Ksucc and that Ksucc proteins are abundant among a group of mitochondrial enzymes that are predominantly involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (28). Importantly, Ksucc is very dynamic not only in mammalian cells, but also in bacteria (27, 29). These lines of evidence strongly suggest that lysine succinylation is likely an important PTM in the regulation of cellular functions.Although key elements of the Ksucc pathway are being identified in mammalian cells, their counterparts in bacteria remain largely unknown. We and others have used a proteomics approach to identify Kac substrates in bacteria (26, 30, 31, 52). The Sir2-like enzyme CobB is the best-studied protein deacetylase in bacteria (8). CobB was initially identified as an enzyme required for the activation of acetyl-CoA synthetase (8). Recently, CobB was shown to play roles in bacterial energy metabolism (31) and stress response (32). Those studies indicated that Kac is an evolutionarily conserved PTM with a role in energy metabolism in prokaryotes. Nevertheless, dynamic changes of lysine acetylation in bacteria have not been studied. In addition, substrates of lysine succinylation and their regulatory enzymes are not known.In this paper, we report a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture (SILAC) to identify and quantify changes in bacterial lysine succinylation, as well as lysine acetylation, in response to glucose, a major energy source. Our screening detected 2,580 lysine-succinylated sites in 670 proteins and 2,803 Kac sites in 782 proteins in Escherichia coli. Our quantitative proteomics data show that glucose had a more profound effect on Ksucc than on Kac. In addition, we found that CobB, a known prokaryotic deacetylase, had dual enzymatic activities to catalyze the removal of two structurally different lysine acyl groups, acetyl and succinyl, from the modified lysine residues.  相似文献   

6.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   

7.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.Post-translational modifications (PTMs)1 are complex and fundamental mechanisms modulating diverse protein properties and functions, and have been associated with almost all known cellular pathways and disease processes (1, 2). Among the hundreds of different PTMs, acylations at lysine residues, such as acetylation (36), malonylation (7, 8), crotonylation (9, 10), propionylation (1113), butyrylation (11, 13), and succinylation (7, 1416) are crucial for functional regulations of many prokaryotic and eukaryotic proteins. Because these lysine PTMs depend on the acyl-CoA metabolic intermediates, such as acetyl-CoA (Ac-CoA), succinyl-CoA, and malonyl-CoA, lysine acylation could provide a mechanism to respond to changes in the energy status of the cell and regulate energy metabolism and the key metabolic pathways in diverse organisms (17, 18).Among these lysine PTMs, lysine succinylation is a highly dynamic and regulated PTM defined as transfer of a succinyl group (-CO-CH2-CH2-CO-) to a lysine residue of a protein molecule (8). It was recently identified and comprehensively validated in both bacterial and mammalian cells (8, 14, 16). It was also identified in core histones, suggesting that lysine succinylation may regulate the functions of histones and affect chromatin structure and gene expression (7). Accumulating evidence suggests that lysine succinylation is a widespread and important PTM in both eukaryotes and prokaryotes and regulates diverse cellular processes (16). The system-wide studies involving lysine-succinylated peptide immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS/MS) have been employed to analyze the bacteria (E. coli) (14, 16), yeast (S. cerevisiae), human (HeLa) cells, and mouse embryonic fibroblasts and liver cells (16, 19). These succinylome studies have generated large data sets of lysine-succinylated proteins in both eukaryotes and prokaryotes and demonstrated the diverse cellular functions of this PTM. Notably, lysine succinylation is widespread among diverse mitochondrial metabolic enzymes that are involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (19, 20). Thus, lysine succinylation is reported as a functional PTM with the potential to impact mitochondrial metabolism and coordinate different metabolic pathways in human cells and bacteria (14, 1922).Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a major cause of mortality worldwide and claims more human lives annually than any other bacterial pathogen (23). About one third of the world''s population is infected with Mtb, which leads to nearly 1.3 million deaths and 8.6 million new cases of TB in 2012 worldwide (24). Mtb remains a major threat to global health, especially in the developing countries. Emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) Mtb, and also the emergence of co-infection between TB and HIV have further worsened the situation (2527). Among bacterial pathogens, Mtb has a distinctive life cycle spanning different environments and developmental stages (28). Especially, Mtb can exist in dormant or active states in the host, leading to asymptomatic latent TB infection or active TB disease (29). To achieve these different physiologic states, Mtb developed a mechanism to sense diverse signals from the host and to coordinately regulate multiple cellular processes and pathways (30, 31). Mtb has evolved its metabolic network to both maintain and propagate its survival as a species within humans (3235). It is well accepted that metabolic network is a central mediator and defining feature of the pathogenicity of Mtb (23, 3638). Knowledge of the regulation of metabolic pathways used by Mtb during infection is therefore important for understanding its pathogenicity, and can also guide the development of novel drug therapies (39). On the other hand, increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells (14, 1922). It is tempting to speculate that lysine succinylation may play an important regulatory role in metabolic processes in Mtb. However, to the best of our knowledge, no succinylated protein in Mtb has been identified, presenting a major obstacle to understand the regulatory roles of lysine succinylation in this life-threatening pathogen.In order to fill this gap in our knowledge, we have initiated a systematic study of the identities and functional roles of the succinylated protein in Mtb. Because Mtb H37Rv is the first sequenced Mtb strain (40) and has been extensively used for studies in dissecting the roles of individual genes in pathogenesis (41), it was selected as a test case. We analyzed the succinylome of Mtb H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and render particular enrichment to metabolic process. A large proportion of the succinylation sites are present on proteins in the central metabolism pathway. We further dissected the regulatory role of succinylation on acetyl-CoA synthetase (Acs) via site-specific mutagenesis analysis and molecular dynamics (MD) simulations showed that reversible lysine succinylation could inhibit the activity of Acs. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a deacetylase and as a desuccinylase of Acs in in vitro assays. Together, our findings provide significant insights into the range of functions regulated by lysine succinylation in Mtb.  相似文献   

8.
Detection of endogenous ubiquitination sites by mass spectrometry has dramatically improved with the commercialization of anti-di-glycine remnant (K-ε-GG) antibodies. Here, we describe a number of improvements to the K-ε-GG enrichment workflow, including optimized antibody and peptide input requirements, antibody cross-linking, and improved off-line fractionation prior to enrichment. This refined and practical workflow enables routine identification and quantification of ∼20,000 distinct endogenous ubiquitination sites in a single SILAC experiment using moderate amounts of protein input.The commercialization of antibodies that recognize lysine residues modified with a di-glycine remnant (K-ε-GG)1 has significantly transformed the detection of endogenous protein ubiquitination sites by mass spectrometry (15). Prior to the development of these highly specific reagents, proteomics experiments were limited to identification of up to only several hundred ubiquitination sites, which severely limited the scope of global ubiquitination studies (6). Recent proteomic studies employing anti-K-ε-GG antibodies have enhanced our understanding of ubiquitin biology through the identification of thousands of ubiquitination sites and the analysis of the change in relative abundance of these sites after chemical or biological perturbation (13, 5, 7). Use of stable isotope labeling by amino acids in cell culture (SILAC) for quantification has enabled researchers to better understand the extent of ubiquitin regulation upon proteasome inhibition and precisely identify those protein classes, such as newly synthesized proteins or chromatin-related proteins, that see overt changes in their ubiquitination levels upon drug treatment (2, 3, 5). Emanuel et al. (1) have combined genetic and proteomics assays implementing the anti-K-ε-GG antibody to identify hundreds of known and putative Cullin-RING ligase substrates, which has clearly demonstrated the extensive role of Cullin-RING ligase ubiquitination on cellular protein regulation.Despite the successes recently achieved with the use of the anti-K-ε-GG antibody, increased sample input (up to ∼35 mg) and/or the completion of numerous experimental replicates have been necessary to achieve large numbers of K-ε-GG sites (>5,000) in a single SILAC-based experiment (13, 5). For example, it has been recently shown that detection of more than 20,000 unique ubiquitination sites is possible from the analysis of five different murine tissues (8). However, as the authors indicate, only a few thousands sites are detected in any single analysis of an individual tissue sample (8). It is recognized that there is need for further improvements in global ubiquitin technology to increase the depth-of-coverage attainable in quantitative proteomic experiments using moderate amounts of protein input (9). Through systematic study and optimization of key pre-analytical variables in the preparation and use of the anti-K-ε-GG antibody as well as the proteomic workflow, we have now achieved, for the first time, routine quantification of ∼20,000 nonredundant K-ε-GG sites in a single SILAC triple encoded experiment starting with 5 mg of protein per SILAC channel. This represents a 10-fold improvement over our previously published method (3).  相似文献   

9.
10.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

11.
12.
13.
14.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

15.
16.
17.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

18.
19.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号