首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Degradation of collagen by fibroblast phagocytosis is an important pathway for physiological remodelling of soft connective tissues. Perturbations of this pathway may provide a mechanism for the development of fibrotic lesions. As collagen phagocytosis may be regulated by either a change of the proportions or the activity of phagocytic cells, we quantified phagocytosis with an in vitro model system. Collagen-coated fluorescent latex beads were incubated with human gingival fibroblasts and the fluorescence associated with internalized beads was measured by flow cytometry. Cells from normal tissues that had been incubated with beads for 3 hours contained a mean of 64% phagocytic cells; however, a small subpopulation (10% of phagocytic cells) contained more than threefold higher numbers of beads per cell than the mean. In contrast, cells from fibrotic lesions exhibited a large reduction of the proportions of phagocytic cells (mean = 13.8%) and there were no cells with high numbers of beads. On the basis of 3H-Tdr labeling, cells from fibrotic lesions that had internalized beads failed to proliferate, in contrast to phagocytic cells from normal tissues, which underwent repeated cell divisions. This result was not due to variations of cell cycle phase as there was no preferential internalization of beads during different phases of the cell cycle. The low phagocytic rate of cells from fibrotic lesions was also not due to asymmetric partitioning of phagosomes at mitosis as videocinemicrography of bead-labeled phagosomes in single, pre-mitotic cells demonstrated that > 90% of phagocytic cells equally partitioned beads to daughter cells. To investigate if inhibition of phagocytosis could be replicated in vitro, cells were incubated with the fibrosis-inducing drugs nifedipine or dilantin. These cultures exhibited marked (15–75%), dose-dependent reductions in the proportions of phagocytic cells, but there was no reduction in bead number per cell. Fibrotic lesions appear to contain fibroblasts with marked deficiencies in phagocytosis and the reduced phagocytic activity of these cells may contribute to unbalanced degradation and fibrosis. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Phagocytosis in macrophages is often studied using inert polymer microspheres. An implicit assumption in these studies is that such particles contain little or no specific information in their structure that affects their intracellular fate. We tested that assumption by examining macrophage phagosomes containing different kinds of particles and found that although all particles progressed directly to lysosomes, their subsequent fates varied. Within 15 min of phagocytosis, >90% of phagosomes containing opsonized sheep erythrocytes, poly-e-caprolactone microspheres, polystyrene microspheres (PS), or polyethylene glycol- conjugated PS merged with the lysosomal compartment. After that point, however, the characteristics of phagolysosomes changed in several ways that indicated differing degrees of continued interaction with the lysosomal compartment. Sheep erythrocyte phagolysosomes merged together and degraded their contents quickly, poly-e-caprolactone phagolysosomes showed intermediate levels of interaction, and PS phagolysosomes became isolated within the cytoplasm. PS were relatively inaccessible to an endocytic tracer, Texas red dextran, added after phagocytosis. Moreover, immunofluorescent staining for the lysosomal protease cathepsin L decreased in PS phagolysosomes to 23% by 4 h after phagocytosis, indicating degradation of the enzyme without replacement. Finally, PS surface labeled with fluorescein-labeled albumin showed a markedly reduced rate of protein degradation in phagolysosomes, when compared to rates measured for proteins in or on other particles. Thus, particle chemistry affected both the degree of postlysosomal interactions with other organelles and, consequently, the intracellular half-life of particle-associated proteins. Such properties may affect the ability of particles to deliver macromolecules into the major histocompatibility complex class I and II antigen presentation pathways.  相似文献   

4.
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.  相似文献   

5.
Pathogenic mycobacteria survive in macrophages of the host organism by residing in phagosomes which they prevent from undergoing maturation and fusion with lysosomes. Several molecular mechanisms have been associated with the phagosome maturation block. Here we show for Mycobacterium avium in mouse bone marrow-derived macrophages that the maturation block required an all-around close apposition between the mycobacterial surface and the phagosome membrane. When small (0.1 μm) latex beads were covalently attached to the mycobacterial surface to act as a spacer that interfered with a close apposition, phagosomes rapidly acquired lysosomal characteristics as indicators for maturation and fusion with lysosomes. As a result, several mycobacteria were delivered into single phagolysosomes. Detailed electron-microscope observations of phagosome morphology over a 7-day post-infection period showed a linear correlation between bead attachment and phagosome–lysosome fusion. After about 3 days post infection, conditions inside phagolysosomes caused a gradual release of beads. This allowed mycobacteria to re-establish a close apposition with the surrounding membrane and sequester themselves into individual, non-maturing phagosomes which had lost lysosomal characteristics. By rescuing themselves from phagolysosomes, mycobacteria remained fully viable and able to multiply at the normal rate. In order to unify the present observations and previously reported mechanisms for the maturation block, we discuss evidence that they may act synergistically to interfere with 'Phagosome Membrane Economics' by causing relative changes in incoming and outgoing endocytic membrane fluxes.  相似文献   

6.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.  相似文献   

7.
T Yajima 《Histochemistry》1988,90(4):245-253
The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases. In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosomes derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. The observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts. These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

8.
Summary The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases.In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosome derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. the observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts.These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

9.
Phagocytosis of human cells is a crucial activity for the virulence of the human parasite Entamoeba histolytica. This protozoan invades and destroys the intestine by killing and phagocytosing epithelial cells, erythrocytes and cells from the immune system. In this study, we used magnetic beads covered with proteins from human serum as a model system to study the early events involved in phagocytosis by E. histolytica. We validated the system showing that the beads uptake triggered the activation of the actin-myosin cytoskeleton and involved a PI3-kinase as previously described for erythrophagocytosis. We purified early phagosomes from wild-type (WT) amoeba and from parasites that overproduced myosin IB (MyoIB+), the unique unconventional myosin of E. histolytica. The MyoIB+ cells exhibit a slower and more synchronized uptake process than the WT strain. Proteomic analysis by liquid chromatography and tandem mass spectroscopy (LC-MS/MS) of the WT and MyoIB+ phagosomes allowed us to identify, for the first time, molecular actors involved in the early step of the uptake process. These include proteins involved in cytoskeleton activity, signalling, endocytosis, lytic activity and cell surface proteins. Interestingly, the proteins that we found specifically recruited on the phagosomes from the MyoIB+ strain were previously described in other eukarytotic cells, as involved in the regulation of cortical F-actin dynamics, such as alpha-actinin and formins. This proteomics approach allows a step further towards the understanding of the molecular mechanisms involved in phagocytosis in E. histolytica that revealed some interesting differences compared with phagocytosis in macrophages or Dictyostelium discoideum, and allowed to identify putative candidates for proteins linked to myosin IB activity during the phagocytic process.  相似文献   

10.
Summary Human gingival fibroblasts were cultured with collagen fibrils. The precise process of collagen phagocytosis and the relationship between acid phosphatase activity and intracellular degradation of collagen were investigated by cytochemical methods at the ultrastructural level. The collagen fibrils were first engulfed at one end by cellular processes, or the cell membrane wrapped itself around the middle of the fibrils. Collagen phagocytosis induced acid phosphatase activity in the fibroblast Golgi-endoplasmic reticulum-lysosome system. By application of the tracer lanthanum, deposits were observed in the intercellular spaces and along the fibrils being phagocytosed. At this stage, primary lysosomes were seen in close proximity to the collagen being engulfed, but no signs of fusion were observed. When the fibrils had been interiorized in whole or in part, they ultimately became enclosed within phagosomes, and no tracer was observed along the interiorized portion of the fibrils. Primary lysosomes then fused with these collagen-containing phagosomes to form phagolysosomes. Collagen degradation occurred within these bodies even though the end of a fibril might have protruded outside of the cell. These results suggest that selective and controlled phagocytosis of collagen and intracellular digestion of it may play a central role in the physiological remodeling and metabolic breakdown of the collagen of connective tissues.  相似文献   

11.
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrPC in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrPC in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrPC promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrPC suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrPC as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.  相似文献   

12.
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.  相似文献   

13.
Gamma-secretase is a high molecular mass protein complex that catalyzes the intramembrane cleavage of its protein substrates. Two proteins involved in phagocytosis, CD44 and the low density lipoprotein receptor-related protein, are gamma-secretase substrates, suggesting that this complex might regulate some aspects of phagocytosis. Our results indicate that the four components of gamma-secretase, viz. presenilin, nicastrin, APH-1, and PEN-2, are present and enriched on phagosome membranes from both murine macrophages and Drosophila S2 phagocytes. The gamma-secretase components form high molecular mass complexes in lipid microdomains of the phagosome membrane with the topology expected for the functional enzyme. In contrast to the majority of the phagosome proteins studied so far, which appear to associate transiently with this organelle, gamma-secretase resides on newly formed phagosomes and remains associated throughout their maturation into phagolysosomes. Finally, our results indicate that interferon-gamma stimulates gamma-secretase-dependent cleavages on phagosomes and that gamma-secretase activity may be involved in the phagocytic response of macrophages to inflammatory cytokines.  相似文献   

14.
Commercially available carboxylated latex beads were covalently labeled with [3H]-tyramine and used in a quantitative phagocytosis assay. Macrophage cells were incubated with 3H-beads, then treated with trypsin-Versene and washed through fetal calf serum to remove uningested beads. Uptake was linear with time (up to 6 hr) and cell number (up to 5 × 105). PU5-1.8 and RAW264 macrophage tumor culture lines were more active than adherent cells from peptone- or oil-induced peritoneal exudates of mice, which were more active than normal peritoneal adherent cells. PU5-1.8 phagocytosis was especially resistant to inhibition by cytochalasin B, but cytochalasin A and iodoacetic acid were effective inhibitors. Treatment of PU5-1.8 cells with LPS or PPD in vitro stimulated latex ingestion; the presence of hydrocortisone blocked the increase but not baseline activity. The easy preparation and storage of labeled beads makes this convenient assay method particularly useful for comparison of the phagocytic activity of a number of cell populations.  相似文献   

15.
Phagocytosis is a specialized mechanism used by mammalian cells, particularly the cells of the immune system, such as dendritic cells (DC) and macrophages, to protect the host against infection. The process involves a complex cascade of pathways, from the ligation of surface receptors of phagocytes with components of the microorganism's surface, formation of phagosomes and subsequently phagolysosomes, to the eventual presentation of foreign Ags. Vesicle-associated membrane protein (VAMP)-8/endobrevin has been shown previously to function in the endocytic pathways. Our results showed that VAMP-8 colocalized with lysosome-associated membrane protein-2, and a significant amount of VAMP-8 was recruited to the phagosomes during bacterial ingestion. However, overexpression of VAMP-8 significantly inhibited phagocytosis in DC. We also found that the phagocytic activity of VAMP-8-/- DC was significantly higher than wild-type VAMP-8+/+ DC, thus further confirming that VAMP-8 negatively regulates phagocytosis in immature DC.  相似文献   

16.
Degradation of collagen is important for the physiological remodeling of connective tissues during growth and development as well as in wound healing, inflammatory diseases, and cancer cell invasion. In remodeling adult tissues, degradation of collagen occurs primarily through a phagocytic pathway. However, although various steps in the phagocytic pathway have been characterized, the enzyme required to initially fragment collagen fibrils for subsequent phagocytosis has not been identified. We have used laser confocal microscopy, transmission electron microscopy, and biochemical assays to show that human fibroblasts initiate degradation of collagen through the collagenase activity of the membrane-bound metalloproteinase MT1-MMP. Degradation of natural and reconstituted collagen substrates correlated with the expression of MT1-MMP, which was localized at sites of collagen cleavage at the surface of the cells and also within the cells, whereas collagen degradation was abrogated when MT1-MMP expression was blocked by small interfering RNA treatment. In contrast to MT1-MMP, the gelatinolytic activity of MMP-2 was not required for collagen phagocytosis. These studies demonstrate a pivotal role of catalytically active MT1-MMP in preparing collagen fibrils for phagocytic degradation.  相似文献   

17.
Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.  相似文献   

18.
Exosomes play important roles in many physiological and pathological processes. However, the exosome–cell interaction mode and the intracellular trafficking pathway of exosomes in their recipient cells remain unclear. Here, we report that exosomes derived from K562 or MT4 cells are internalized more efficiently by phagocytes than by non‐phagocytic cells. Most exosomes were observed attached to the plasma membrane of non‐phagocytic cells, while in phagocytic cells these exosomes were found to enter via phagocytosis. Specifically, they moved to phagosomes together with phagocytic polystyrene carboxylate‐modified latex beads (biospheres) and were further sorted into phagolysosomes. Moreover, exosome internalization was dependent on the actin cytoskeleton and phosphatidylinositol 3‐kinase, and could be inhibited by the knockdown of dynamin2 or overexpression of a dominant‐negative form of dynamin2. Further, antibody pretreatment assays demonstrated that tim4 but not tim1 was involved in exosomes uptake. We also found that exosomes did not enter the internalization pathway involving caveolae, macropinocytosis and clathrin‐coated vesicles. Our observation that the cellular uptake of exosomes occurs through phagocytosis has important implications for exosome–cell interactions and the exosome intracellular trafficking pathway.  相似文献   

19.
By applying density gradient electrophoresis (DGE) to human macrophages infected with Mycobacterium bovis BCG, we were able to separate three different bacterial fractions representing arrested phagosomes, phagolysosomes and mycobacterial clumps. After further purification of the phagosomal population, we found that isolated phagosomes containing live BCG were arrested in maturation as they exhibited only low amounts of the lysosomal glycoprotein LAMP-1 and processing of the lysosomal hydrolase cathepsin D was blocked. In addition, low amounts of MHC class I and class II molecules and the absence of HLA-DM suggest sequestration of mycobacterial phagosomes from antigen-processing pathways. We further investigated the involvement of the actin-binding protein coronin in intracellular survival of mycobacteria and showed that human coronin, as well as F-actin, were associated with early stages of mycobacterial phagocytosis but not with phagosome maintenance. Therefore, we conclude that the unique DGE migration pattern of arrested phagosomes is not as a result of retention of coronin, but that there are other proteins or lipids responsible for the block in maturation in human macrophages.  相似文献   

20.
Accumulation of indigestible lipofuscin and decreased mitochondrial energy production are characteristic age-related changes of post-mitotic retinal pigment epithelial (RPE) cells in the human eye. To test whether these two forms of age-related impairment have interdependent effects, we quantified the ATP-dependent phagocytic function of RPE cells loaded or not with the lipofuscin component A2E and inhibiting or not mitochondrial ATP synthesis either pharmacologically or genetically. We found that physiological levels of lysosomal A2E reduced mitochondrial membrane potential and inhibited oxidative phosphorylation (OXPHOS) of RPE cells. Furthermore, in media with physiological concentrations of glucose or pyruvate, A2E significantly inhibited phagocytosis. Antioxidants reversed these effects of A2E, suggesting that A2E damage is mediated by oxidative processes. Because mitochondrial mutations accumulate with aging, we generated novel genetic cellular models of RPE carrying mitochondrial DNA point mutations causing either moderate or severe mitochondrial dysfunction. Exploring these mutant RPE cells we found that, by itself, only the severe but not the moderate OXPHOS defect reduces phagocytosis. However, sub-toxic levels of lysosomal A2E are sufficient to reduce phagocytic activity of RPE with moderate OXPHOS defect and cause cell death of RPE with severe OXPHOS defect. Taken together, RPE cells rely on OXPHOS for phagocytosis when the carbon energy source is limited. Our results demonstrate that A2E accumulation exacerbates the effects of moderate mitochondrial dysfunction. They suggest that synergy of sub-toxic lysosomal and mitochondrial changes in RPE cells with age may cause RPE dysfunction that is known to contribute to human retinal diseases like age-related macular degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号