首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

2.
The Canada lynx (Lynx canadensis) and the bobcat (Lynx rufus) are closely related species with overlap at their range peripheries, but the factors that limit each species and the interactions between them are not well understood. Habitat selection is a hierarchical process, in which selection at higher orders (geographic range, home range) may constrain selection at lower orders (within the home range). Habitat selection at a very fine scale within the home range has been less studied for both lynx and bobcat compared to selection at broader spatiotemporal scales. To compare this fourth‐order habitat selection by the two species in an area of sympatry, we tracked lynx and bobcat during the winters of 2017 and 2018 on the north shore of Lake Huron, Ontario. We found that both lynx and bobcat selected shallower snow, higher snowshoe hare abundance, and higher amounts of coniferous forest at the fourth order. However, the two species were spatially segregated at the second order, and lynx were found in areas with deeper snow, more snowshoe hare, and more coniferous forest. Taken together, our findings demonstrate that the lynx and bobcat select different resources at the second order, assorting along an environmental gradient in the study area, and that competition is unlikely to be occurring between the two species at finer scales.  相似文献   

3.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

4.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

5.
Habitat selection can be influenced by the distribution of the habitat types in the landscape as well as net gain in visiting patches of resources, causing individual variation in habitat selection. Moreover, the hypothesis of functional response in habitat selection predicts that the degree of selection of a resource depends on its relative availability. We used radio-telemetry data from individual moose on an island off the coast of northern Norway to evaluate whether the selection of habitat types at the landscape scale differed from the choice of habitat types within the home range, and investigated the functional response in habitat selection by relating individual habitat selection to home range characteristics. At the landscape scale, moose selected for habitat types that provided both good forage and cover, with small differences between sex and age groups. At the home range scale, all individuals selected habitat types that were associated with cover and low human impact. Habitat selection was not modified by local moose density, but was related to home range size at both spatial scales. Larger home ranges contained larger proportions of non-preferred habitat types compared to smaller home ranges. At the home range scale, the selection for a habitat type decreased with its relative availability, indicating a functional response in habitat selection. This suggests that habitat selection is modified by home range size, which influences the availability of habitat types and shapes individual habitat selection patterns. Our results support previous suggestions that analyses of habitat or resource selection should follow a multi-scale approach. Both the relative availability of habitat types as well as individual variation in home range size should be accounted for in order to disentangle the complex mechanisms that contribute to shape patterns of resource selection in animals.  相似文献   

6.
Foraging behaviour and habitat selection occur as hierarchical processes. Understanding the factors that govern foraging and habitat selection thus requires investigation of those processes over the scales at which they occur. We investigated patterns of habitat use by African elephants (Loxodonta africana) in relation to vegetation greenness to investigate the scale at which that landscape attribute was most closely related to distribution of elephant locations. We analysed Global Positioning System radio-collar locations for 15 individuals, using the Normalized Difference Vegetation Index as a representation of vegetation greenness in a Geographic Information Systems framework. We compared the importance of vegetation greenness at three spatial scales: the total home range, the seasonal home range and the 16-day home range. During the wet season, seasonal home ranges for both sexes were associated with intermediate greenness within the total home range; there was no evidence of selection based on greenness at finer scales. During the dry season, the strongest associations were within the 16-day home range: individual locations for males tended to be in areas of intermediate greenness, and those for females were in areas of intermediate and high greenness. Our findings suggest that the role of vegetation greenness varies with the scale of analysis, likely reflecting the hierarchical processes involved in habitat selection by elephants.  相似文献   

7.
Linking moose habitat selection to limiting factors   总被引:7,自引:0,他引:7  
It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home‐range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home‐range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade‐offs among these.  相似文献   

8.
Large populations of sika deer occur in lowland heath, woodland, and grassland mosaics in southern England. Previous studies have focused on understanding single factors potentially affecting distribution and habitat selection of sika deer rather than considering simultaneously effects of landscape configuration and human disturbance on their distribution and habitat selection. This study measured effects of habitat availability, landscape structure, and human disturbance on where sika deer placed their home ranges and habitat selection within those ranges. Two main hypotheses were tested: (1) habitat selection differs according to landscape structure and habitat availability at both landscape and home range scales and (2) distribution of sources of human disturbance within the home range of deer affects their distribution. Results from radiotracking 31 females provided support for the first hypothesis and partial support for the second. Habitat selection at the landscape and home range scales differed between landscapes with different habitat structure and availability and was driven by distribution and availability of food and cover and a perceived risk linked to disturbance. Furthermore, deer selected open areas close to cover and this selection was stronger with presence of human disturbance, although results differed between study areas with different habitat distribution and level of disturbance. The study highlights the importance for managing deer of a balance between grazing and cover resources and the distribution of human disturbance.  相似文献   

9.
Differentiation in habitat selection among sympatric species may depend on niche partitioning, species interactions, selection mechanisms and scales considered. In a mountainous area in Sweden, we explored hierarchical habitat selection in Global Positioning System-collared individuals of two sympatric large carnivore species; an obligate predator, the Eurasian lynx (Lynx lynx), and a generalist predator and scavenger, the wolverine (Gulo gulo). Although the species’ fundamental niches differ widely, their ranges overlap in this area where they share a prey base and main cause of mortality. Both lynx and wolverines selected for steep and rugged terrain in mountainous birch forest and in heaths independent of scale and available habitats. However, the selection of lynx for their preferred habitats was stronger when they were forming home ranges and they selected the same habitats within their home ranges independent of home range composition. Wolverines displayed a greater variability when selecting home ranges and habitat selection also varied with home range composition. Both species selected for habitats that promote survival through limited encounters with humans, but which also are rich in prey, and selection for these habitats was accordingly stronger in winter when human activity was high and prey density was low. We suggest that the observed differences between the species result primarily from different foraging strategies, but may also depend on differences in ranging and resting behaviour, home range size, and relative density of each species. Our results support the prediction that sympatric carnivores with otherwise diverging niches can select for the same resources when sharing main sources of food and mortality.  相似文献   

10.
Habitat preference of eagle owls Bubo bubo were examined through comparing habitat composition around 51 occupied cliffs and 36 non-occupied cliffs in Alicante (E Spain). We employed Generalized Linear Models to examine patterns of habitat preference at three different spatial scales: nest site (7 km2), home range (25 km2), and landscape (100 km2). At the nest site scale, occupied cliffs were more rugged, had a greater proportion of forest surface in the surroundings, and were further from the nearest paved road than unoccupied cliffs. Additionally, probability of having an occupied cliff increased when there was another occupied territory in the surroundings. At both the home range scale and the landscape scale, high probabilities of presence of eagle owls were related to high percentages of Mediterranean scrubland around the cliffs, which are the preferred habitat of European rabbits Oryctolagus cuniculus , the main prey of the owls. We suggest a hierarchical process of habitat selection in the eagle owl concerning suitable trophic resources at the broadest scales and adequate sites for breeding and roosting at the smallest scale. However, it should be noted that some structural features such as the proximity of roads were not necessarily avoided by the owls, but their presence were possibly constrained by systematic killing of individuals. Our paper provides new evidence for the requirement of multi-scale approaches to gain insight into both the different limiting factors for the persistence of populations and the role of individual perception of the environment in the evolution of habitat selection.  相似文献   

11.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

12.
1. Understanding and accurately predicting the spatial patterns of habitat use by organisms is important for ecological research, biodiversity conservation and ecosystem management. However, this understanding is complicated by the effects of spatial scale, because the scale of analysis affects the quantification of species-environment relationships. 2. We therefore assessed the influence of environmental context (i.e. the characteristics of the landscape surrounding a site), varied over a large range of scales (i.e. ambit radii around focal sites), on the analysis and prediction of habitat selection by African elephants in Kruger National Park, South Africa. 3. We focused on the spatial scaling of the elephants' response to their main resources, forage and water, and found that the quantification of habitat selection strongly depended on the scales at which environmental context was considered. Moreover, the inclusion of environmental context at characteristic scales (i.e. those at which habitat selectivity was maximized) increased the predictive capacity of habitat suitability models. 4. The elephants responded to their environment in a scale-dependent and perhaps hierarchical manner, with forage characteristics driving habitat selection at coarse spatial scales, and surface water at fine spatial scales. 5. Furthermore, the elephants exhibited sexual habitat segregation, mainly in relation to vegetation characteristics. Male elephants preferred areas with high tree cover and low herbaceous biomass, whereas this pattern was reversed for female elephants. 6. We show that the spatial distribution of elephants can be better understood and predicted when scale-dependent species-environment relationships are explicitly considered. This demonstrates the importance of considering the influence of spatial scale on the analysis of spatial patterning in ecological phenomena.  相似文献   

13.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

14.
Abstract In March 2000, Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern periphery of their range, where lynx habitat is disjunct and snowshoe hare (Lepus americanus) densities are low. Forest conditions vary across lynx range; thus, region-specific data on the habitat requirements of lynx are needed. We studied lynx in northern Maine, USA, from 1999 to 2004 to assess quality and potential for forests in Maine to sustain lynx populations. We trapped and radiocollared 43 lynx (21 M, 22 F) during this period and evaluated diurnal habitat selection by 16 resident adult lynx (9 M, 7 F) monitored in 2002. We evaluated lynx selection of 8 habitats at multiple spatial scales, and related lynx habitat selection to snowshoe hare abundance. Lynx preferred conifer-dominated sapling stands, which supported the highest hare densities on our study site (x̄ = 2.4 hares/ha), over all other habitats. The habitats where lynx placed their home ranges did not differ by sex. However, within their home ranges, males not only preferred conifer-dominated sapling stands, but also preferred mature conifer, whereas females singularly preferred conifer-dominated sapling stands. Approximately one-third of Maine's spruce-fir forest and nearly 50% of our study area was regenerating conifer or mixed-sapling forest, resulting from a disease event and intensive forest management (e.g., large clear-cuts). Our findings suggest that current habitat conditions in Maine are better than western montane regions and approach conditions in boreal forests during periods of hare abundance. We recommend that forest landowners maintain a mosaic of different-aged conifer stands to ensure a component of regenerating conifer-dominated forest on the landscape.  相似文献   

15.
动物生境选择研究中的时空尺度   总被引:17,自引:0,他引:17  
张明海  李言阔 《兽类学报》2005,25(4):395-401
尺度研究已成为生态学上的一个重要概念和研究热点,但是在动物生境选择的研究中尚未引起足够的重视。动物的生境选择包括多层次的判别和一系列等级序位,在各个尺度和水平上具有不同的特征和机制,受到时空尺度的严格限定。繁殖期的时间限制、社群压力、环境变化、动物生理需求的变化决定了动物生境选择的时间制约性;而生境资源的斑块化分布、功能生境之间的相互作用决定了动物生境选择的空间制约性。研究者对时间和空间尺度的选取与应用会直接影响到生境选择研究结果的科学性和实效性。本文从动物生境选择的时空制约性出发,分析了生境选择研究中时间尺度的重要性,叙述了国内外生境选择研究中常见的研究尺度,强调了多尺度研究和长期生态研究的必要性,尺度的选择应该成为生境选择研究的起点和基础。  相似文献   

16.
In theory, habitat preferences should be adaptive. Accordingly, fitness is often assumed to be greater in preferred habitats; however, this assumption is rarely tested and, when it is, the results are often equivocal. Habitat preferences may not directly convey fitness advantages if animals are constrained by tradeoffs with other selective pressures like predation or food availability. We address unresolved questions about the survival consequences of habitat choices made during brood-rearing in a precocial species with exclusive maternal care (mallard Anas platyrhynchos, n = 582 radio-marked females on 27 sites over 8 years). We directly linked duckling survival with habitat selection patterns at two spatial scales using logistic regression and model selection techniques. At the landscape scale (55–80 km2), females that demonstrated stronger selection of areas with more cover type 4 wetlands and greater total cover type 3 wetland area (wetlands with large expanses of open water surrounded by either a narrow or wide peripheral band of vegetation, respectively) had lower duckling survival rates than did females that demonstrated weaker selection of these habitats. At finer scales (0.32–7.16 km2), females selected brood-rearing areas with a greater proportion of wetland habitat with no consequences for duckling survival. However, females that avoided woody perennial habitats composed of trees and shrubs fledged more ducklings. The relationship between habitat selection and survival depended on both spatial scale and habitats considered. Females did not consistently select brood-rearing habitats that conferred the greatest benefits, an unexpected finding, although one that has also been reported in other recent studies of breeding birds.  相似文献   

17.
Habitat selection is an inherently scale-sensitive process in which detected selection patterns frequently depend on the scale of analysis employed. We used a multi-scale modelling approach to identify how the distributions of two sympatric birds are shaped by differential selection at the landscape, land use and microhabitat scales and by human infrastructures as possible sources of disturbance. We studied two threatened steppe birds, the pin-tailed sandgrouse (PTS) and black-bellied sandgrouse (BBS) in central Spain. Land use gradients explained most of the variation in PTS and BBS occurrence, but there was cross-scale interdependence between the lower (microhabitat) and upper (landscape) spatial scales for the PTS. Synergies between the three scales highlighted the importance of integrating habitat scales in a single modelling framework. The process of habitat selection was also modulated by human disturbance. Both species selected ploughs of large size distant from houses, tracks and other infrastructures, although BBS exhibited broader habitat tolerance than the PTS, and was more sensitive to human disturbance. At microhabitat scale, PTS selected ploughs with greater green vegetation cover and insect abundance and fallows with lower dry vegetation cover and height but greater stone cover. This might reflect a trade-off between camouflage (vegetation and stone cover for concealment) and visibility for predator detection and escape. Ploughs and fallows should be maintained by means of traditional 2-year rotations and low management during the breeding season. Ongoing urbanization trends and infrastructure development inside protected areas should be limited. Multi-scale models were key to identify scale-specific factors that determine sandgrouse habitat preferences and conservation requirements at appropriate levels, and are recommended to better guide regional and local conservation efforts of threatened species.  相似文献   

18.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

19.
Behavioural strategies may have important fitness, ecological and evolutionary consequences. In woodland caribou, human disturbances are associated with higher predation risk. Between 2004 and 2011, we investigated if habitat selection strategies of female caribou towards disturbances influenced their calf’s survival in managed boreal forest with varying intensities of human disturbances. Calf survival was 53 % and 43 % after 30 and 90 days following birth, respectively, and 52 % of calves that died were killed by black bear. The probability that a female lose its calf to predation was not influenced by habitat composition of her annual home range, but decreased with an increase in proportion of open lichen woodland within her calving home range. At the local scale, females that did not lose their calf displayed stronger avoidance of high road density areas than females that lost their calf to predation. Further, females that lost their calf to predation and that had a low proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas where these young cutovers were locally absent. Also, females that lost their calf to predation and that had a high proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas with a high local density of ≤5-year-old cutovers. Our study demonstrates that we have to account for human-induced disturbances at both local and regional scales in order to further enhance effective caribou management plans. We demonstrate that disturbances not only impact spatial distribution of individuals, but also their reproductive success.  相似文献   

20.
Capsule There is a relationship between owl numbers and the availability of the agri-forest patchwork.

Aims To model habitat preferences at three different scales of two predators largely neglected within the framework of Environmental Impact Assessment (EIA) studies.

Methods We studied habitat preferences of Long-eared Owls and Little Owls by comparing habitat composition around 28 and 78 occupied territories respectively with 55 non-occupied territories in Alicante (eastern Spain). Generalized linear models were used to examine patterns of habitat preference at three different spatial scales: nest-site, home range and landscape.

Results At the nest-site scale, Long-eared Owls preferred wooded areas with few paved roads while Little Owls preferred arid plantations. Furthermore, the probability of finding an occupied territory increased with the proximity of another occupied territory in the surroundings. The home range scale models mirror the feeding requirements of the owls. Thus, Long-eared Owls occupied areas with high percentages of forest, arid plantations, edges between these two land uses, short distances between nests, with presence of conspecifics and little human disturbance. Little Owls occupied arid plantations with high availability of linear structures and the proximity of villages. At the landscape scale, Long-eared Owls eluded extensive forests, and Little Owls preferred arid plantations.

Conclusions We suggest a hierarchical process of habitat selection for both owls regarding fitting trophic resources at the broadest scales and adequate sites for breeding and roosting at the smallest scale. EIA studies must consider that protecting small areas around single nests may not be an efficient conservation option compared with preserving clusters of territories for both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号