首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Z α1-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFκB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFκB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFκB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.SEPS1 (selenoprotein S, VIMP, Tanis, or SelS) is a selenoprotein found in the endoplasmic reticulum (ER)3 membrane. SEPS1 participates in the processing and removal of misfolded proteins from the ER to the cytosol, where they are polyubiquitinated and degraded through the proteasome (1). SEPS1 can be induced by ER stress (2) and has been shown in macrophages to be protective from pharmacological ER stress agent-induced apoptosis (3).The endoplasmic reticulum is one of the largest cell organelles. It serves many essential functions, including production of all components of cellular membranes, proteins, lipids, and sterols (4). Only correctly folded proteins are transported out of the ER, whereas incompletely folded proteins are retained in the organelle to complete the folding process or be targeted for destruction. ER stress is defined as an imbalance between the cellular demand for ER function and capacity of the organelle. It is characterized by a number of intracellular responses. These responses include the ER overload response (EOR), the unfolded protein response (UPR), and apoptosis.α1-Antitrypsin (AAT) deficiency is a disease characterized by early onset emphysema and liver disease (5). The mutant Z form of this autosomal co-dominant disease occurs in >95% of all individuals with AAT deficiency (6). Liver disease occurs in ∼10% of all homozygous neonates who develop hepatitis and cholestasis. A proportion of these children progress to liver failure, requiring liver transplantation (7, 8). Cirrhosis can also occur in adults without a preceding history of childhood liver disease. The mutant Z AAT polymerizes and accumulates in the ER, leaving only 15% of ZAAT secreted (9, 10). This accumulation of abnormal protein in the ER gives rise to ER stress, which is believed to contribute to the liver disease that results from AAT deficiency. The cells respond to this perturbation by inducing the expression of novel genes whose products aim to restore normal ER function (11). SEPS1 is an example of a molecular chaperone that serves to augment the capacity of the ER for protein folding and degradation.In this paper, we investigate the role of SEPS1 in regulating the cellular response to ER stress in HepG2 cells transfected with the ZAAT transgene. We investigate the effect of SEPS1 on the UPR component of this response by measuring grp78 promoter activity, a UPR-up-regulated gene that functions as a molecular chaperone, and by detecting activated ATF6, which occurs downstream to the activation of grp78. The EOR component of ER stress is investigated by measuring NFκB activation.We study the effect of selenium supplementation on the action of SEPS1 to see if the function of this selenoprotein can be enhanced and, if so, through which pathways, looking specifically at grp78 promoter activity, ATF6 activation, and NFκB activation and also at glutathione peroxidase (GPx) activity and at the anti-inflammatory 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) pathway. GPx is a selenoprotein whose activity can be readily assayed. This was used as a measure of selenoprotein activity.The role of SEPS1 in conformational diseases has not been evaluated. These diseases are caused by inherited or acquired modifications in protein structure, where specific proteins undergo a conformational rearrangement, causing deposition within cellular compartments, such as the ER. This can lead to devastating results. AAT deficiency is one such disease, but the group includes Alzheimer, Parkinson, and Huntington diseases and cystic fibrosis.  相似文献   

2.
SEPS1 (also called selenoprotein S, SelS) plays an important role in the production of inflammatory cytokines and its expression is activated by endoplasmic reticulum (ER) stress. In this report, we have identified two binding sites for the nuclear factor kappa B in the human SEPS1 promoter. SEPS1 gene expression, protein levels and promoter activity were all increased 2-3-fold by TNF-alpha and IL-1beta in HepG2 cells. We have also confirmed that the previously proposed ER stress response element GGATTTCTCCCCCGCCACG in the SEPS1 proximate promoter is fully functional and responsive to ER stress. However, concurrent treatment of HepG2 cells with IL-1beta and ER stress produced no additive effect on SEPS1 gene expression. We conclude that SEPS1 is a new target gene of NF-kappaB. Together with our previous findings that SEPS1 may regulate cytokine production in macrophage cells, we propose a regulatory loop between cytokines and SEPS1 that plays a key role in control of the inflammatory response.  相似文献   

3.
Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells   总被引:1,自引:0,他引:1  
SEPS1 (also called selenoprotein S, SelS, Tanis or VIMP) is a selenoprotein, localized predominantly in the ER membrane and also on the cell surface. In this report, we demonstrate that SEPS1 protein is also secreted from hepatoma cells but not from five other types of cells examined. The secretion can be abolished by the ER-Golgi transport inhibitor Brefeldin A and by the protein synthesis inhibitor cycloheximide. Using a sandwich ELISA, SEPS1 was detected in the sera of 65 out of 209 human subjects (31.1%, average=15.7+/-1.1 ng/mL). Fractionation of human serum indicated that SEPS1 was associated with LDL and possibly with VLDL. The function of plasma SEPS1 is unclear but may be related to lipoprotein metabolism.  相似文献   

4.
Preadipocytes constitutively express GATA-2 and GATA-3 that are required to halt the cells at the undifferentiated stage. However, we unexpectedly found that K-7174, a GATA-specific inhibitor, did not induce but rather inhibited differentiation of 3T3-L1 preadipocytes. It was associated with lack of lipid accumulation, blunted expression of adipocyte markers including adiponectin and peroxisome proliferator-activated receptor gamma (PPARgamma), and sustained expression of a preadipocyte marker monocyte chemoattractant protein 1 (MCP-1). Subsequent experiments revealed that K-7174 had the potential to induce endoplasmic reticulum (ER) stress evidenced by induction of GRP78 and CHOP. Other inducers of ER stress completely reproduced the effects of K-7174 including suppression of lipid accumulation, blockade of induction of adiponection and PPARgamma and maintenance of MCP-1 expression. These results indicated a possibility that ER stress suppresses adipocyte differentiation and that GATA inhibitor K-7174 has the potential for interfering with adipogenesis through induction of ER stress.  相似文献   

5.
6.
7.
8.
Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non-tumorogenic cells MCF10A. In conclusion, pharmacological inhibition of ChoKα induces cancer cell death through a mechanism that involves the activation of exaggerated and persistent ER stress supported by CHOP overproduction.  相似文献   

9.
Recent studies on E3 of endoplasmic reticulum (ER)‐associated degradation (ERAD) in plants have revealed homologs in yeast and animals. However, it remains unknown whether the plant ERAD system contains a plant‐specific E3 ligase. Here, we report that MfSTMIR, which encodes an ER‐membrane‐localized RING E3 ligase that is highly conserved in leguminous plants, plays essential roles in the response of ER and salt stress in Medicago. MfSTMIR expression was induced by salt and tunicamycin (Tm). mtstmir loss‐of‐function mutants displayed impaired induction of the ER stress‐responsive genes BiP1/2 and BiP3 under Tm treatment and sensitivity to salt stress. MfSTMIR promoted the degradation of a known ERAD substrate, CPY*. MfSTMIR interacted with the ERAD‐associated ubiquitin‐conjugating enzyme MtUBC32 and Sec61‐translocon subunit MtSec61γ. MfSTMIR did not affect MtSec61γ protein stability. Our results suggest that the plant‐specific E3 ligase MfSTMIR participates in the ERAD pathway by interacting with MtUBC32 and MtSec61γ to relieve ER stress during salt stress.  相似文献   

10.
11.
Although the mouse bone marrow stromal cell line ST2 has been known to be differentiated into osteoblasts, the differentiation characteristics of the cell into adipocyte and the concerned relationship between its adipogenesis and osteogenesis remains unknown. The adipogenic induction medium which is made up of insulin, dexamethasone (DEX) and 3-isobutyl-1-methylxanthine(IBMX), stimulated the expression of n early adipogenic marker PPAR γ and a late marker GPDH in ST2 cells. The triglyceride accumulation and lipid stain level generated by the induction medium in ST2 cells was inhibited by RA with IC50 at about 1 nM. The induction medium up-regulated expression of PPARγ and GPDH was also inhibited by RA whereas RA (30 nM) exterted no effect on the cell growth. Interestingly, treatment of the cells with induction medium in the presense of RA caused a 3- or 10-fold higher in ALP activity respectively as compared to those treated with RA or the induction medium alone. RT-PCR analysis showed that such a synergistic effect of RA and the induction medium paralleled the process of inhibition on adipogenesis. Additional experiments showed that IBMX played a key role in increasing the effect of RA and ALP activity. Our results suggested that the relationship between adipogenesis and osteogenesis in ST2 cells was reciprocally interrelated and the process of adipogenesis could be potentially reversed into an osteoblastogenic tendency. This is the first report demonstrating that RA transforms adipogenic potential into an osteoblastic tendency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Selective macroautophagy/autophagy targets specific cargo by autophagy receptors through interaction with ATG8 (autophagy-related protein 8)/MAP1LC3 (microtubule associated protein 1 light chain 3) for degradation in the vacuole. Here, we report the identification and characterization of 3 related ATG8-interacting proteins (AT1G17780/ATI3A, AT2G16575/ATI3B and AT1G73130/ATI3C) from Arabidopsis. ATI3 proteins contain a WxxL LC3-interacting region (LIR) motif at the C terminus required for interaction with ATG8. ATI3 homologs are found only in dicots but not in other organisms including monocots. Disruption of ATI3A does not alter plant growth or development but compromises both plant heat tolerance and resistance to the necrotrophic fungal pathogen Botrytis cinerea. The critical role of ATI3A in plant stress tolerance and disease resistance is dependent on its interaction with ATG8. Disruption of ATI3B and ATI3C also significantly compromises plant heat tolerance. ATI3A interacts with AT3G56740/UBAC2A and AT2G41160/UBAC2B (Ubiquitin-associated [UBA] protein 2a/b), 2 conserved proteins implicated in endoplasmic reticulum (ER)-associated degradation. Disruption of UBAC2A and UBAC2B also compromised heat tolerance and resistance to B. cinerea. Overexpression of UBAC2 induces formation of ATG8- and ATI3-labeled punctate structures under normal conditions, likely reflecting increased formation of phagophores or autophagosomes. The ati3 and ubac2 mutants are significantly compromised in sensitivity to tunicamycin, an ER stress-inducing agent, but are fully competent in autophagy-dependent ER degradation under conditions of ER stress when using an ER lumenal marker for detection. We propose that ATI3 and UBAC2 play an important role in plant stress responses by mediating selective autophagy of specific unknown ER components.  相似文献   

13.
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.  相似文献   

14.
15.
Recent studies have shown a link between obesity and endoplasmic reticulum (ER) stress. Perturbations in ER homeostasis cause ER stress and activation of the unfolded protein response (UPR). Adipocyte differentiation contributes to weight gain, and we have shown that markers of ER stress/UPR activation, including GRP78, phospho-eIF2α, and spliced XBP1, are upregulated during adipogenesis. Given these findings, the objective of this study was to determine whether attenuation of UPR activation by the chemical chaperone 4-phenylbutyrate (4-PBA) inhibits adipogenesis. Exposure of 3T3-L1 preadipocytes to 4-PBA in the presence of differentiation media decreased expression of ER stress markers. Concomitant with the suppression of UPR activation, 4-PBA resulted in attenuation of adipogenesis as measured by lipid accumulation and adiponectin secretion. Consistent with these in vitro findings, female C57BL/6 mice fed a high-fat diet supplemented with 4-PBA showed a significant reduction in weight gain and had reduced fat pad mass, as compared with the high-fat diet alone group. Furthermore, 4-PBA supplementation decreased GRP78 expression in the adipose tissue and lowered plasma triglyceride, glucose, leptin, and adiponectin levels without altering food intake. Taken together, these results suggest that UPR activation contributes to adipogenesis and that blocking its activation with 4-PBA prevents adipocyte differentiation and weight gain in mice.  相似文献   

16.
17.
The endoplasmic reticulum (ER) is essential for lipid biosynthesis, and stress signals in this organelle are thought to alter lipid metabolism. Elucidating the mechanisms that underlie the dysregulation of lipid metabolism in hepatocytes may lead to novel therapeutic approaches for the treatment of lipid accumulation. We first tested the effects of several inhibitors on lipid dysregulation induced by tunicamycin, an ER stress inducer. Triacsin C, an inhibitor of long-chain acyl-CoA synthetase (ACSL) 1, 3, and 4, was the most potent among these inhibitors. We then analyzed the expression of the ACSL family during ER stress. The expression of ACSL3 was induced by ER stress in HuH-7 cells and in mice livers. ACSL3 shRNA, but not ACSL1 shRNA, inhibited the induction of lipid accumulation. GSK-3β inhibitors attenuated ACSL3 expression and the lipid accumulation induced by ER stress in HuH-7 cells. shRNA that target GSK-3β also inhibited the upregulation of ACSL3 and lipid accumulation in HuH-7 and HepG2 cells. The hepatitis B virus mutant large surface protein, which is known to induce ER stress, increased the lipid content of cells. Similarly, Triacsin C, and GSK-3β inhibitors abrogated the lipid dysregulation caused by the hepatitis B virus mutant large surface protein. Altogether, ACSL3 and GSK-3β represent novel therapeutic targets for lipid dysregulation by ER stress.  相似文献   

18.
A recent report claimed that endoplasmic reticulum (ER) stress activates the ER trans-membrane receptor IRE1α, leading to increased caspase-2 levels via degradation of microRNAs, and consequently induction of apoptosis. This observation casts caspase-2 into a central role in the apoptosis triggered by ER stress. We have used multiple cell types from caspase-2-deficient mice to test this hypothesis but failed to find significant impact of loss of caspase-2 on ER-stress-induced apoptosis. Moreover, we did not observe increased expression of caspase-2 protein in response to ER stress. Our data strongly argue against a critical role for caspase-2 in ER-stress-induced apoptosis.  相似文献   

19.
Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress.  相似文献   

20.
During endoplasmic reticulum (ER)-associated degradation, p97(VCP) is recruited to the ER membrane through interactions with transmembrane proteins, such as selenoprotein S (SelS), selenoprotein K (SelK), hrd1, and gp78. SelS has a single-spanning transmembrane domain and protects cells from ER stress-induced apoptosis through interaction with p97(VCP). The cytosolic tail of SelS consists of a coiled-coil domain, a putative VCP-interacting motif (VIM), and an unpronounced glycine- and proline-rich secondary structure. To understand the regulatory mechanism of SelS during ER stress, we investigated the interaction of the protein with p97(VCP) using mouse neuroblastoma cells and human embryonic kidney 293 cells. The SelS expression level increased when ER stress was induced. In addition, the effect of ER stress was enhanced, and recruitment of p97(VCP) to the ER membrane was inhibited in SelS knockdown cells. The effect of SelS knockdown was rescued by ectopic expression of SelS U188C. p97(VCP) interacted with SelS U188C and was recruited to the ER membrane. The expression of SelS[ΔVIM], which is a VIM deletion mutant of SelS, also showed both a recovery effect and an interaction with p97(VCP) in cells. However, mutants in which the proline residue positions 178 or 183 of SelS were changed to alanine or were deleted did not interact with p97(VCP). The proline mutants did not rescue ER stress in SelS knockdown cells. These results suggest that both Pro178 and Pro183 of SelS play important roles in the translocation of p97(VCP) to the ER membrane and protect cells from ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号