首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an “untapped reservoir” of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.  相似文献   

2.
It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.  相似文献   

3.
The colors of deep-sea species are generally assumed to be cryptic,but it is not known how cryptic they are and under what conditions.This study measured the color of approximately 70 deep-sea species,both pelagic and benthic, and compared the results with twosets of predictions: 1) optimal crypsis under ambient light,2) optimal crypsis when viewed by bioluminescent "searchlights."The reflectances of the pelagic species at the blue-green wavelengthsimportant for deep-sea vision were far lower than the predictedreflectances for crypsis under ambient light and closer to thezero reflectance prediction for crypsis under searchlights.This suggests that bioluminescence is more important than ambientlight for the visual detection of pelagic species at mesopelagicdepths. The reflectances of the benthic species were highlyvariable and a relatively poor match to the substrates on whichthey were found. However, estimates of the contrast sensitivityof deep-sea visual systems suggest that even approximate matchesmay be sufficient for crypsis in visually complex benthic habitats.Body coloration was generally uniform, but many crabs had strikingpatterns that may serve to disrupt the outlines of their bodies.  相似文献   

4.
The pelagic realm of the ocean is characterized by extremelyclear water and a lack of surfaces. Adaptations to the visualecology of this environment include transparency, fluorescence,bioluminescence, and deep red or black pigmentation. While thesignals that pelagic organisms send are increasingly well-understood,the optical capabilities of their viewers, especially for predatorswith camera-like vision such as fish and squid, are almost unknown.Aquatic camera-like vision is characterized by a spherical lensfocusing an image on the retina. Here, we measured the resolvingpower of the lenses of eight species of pelagic cephalopodsto obtain an approximation of their visual capabilities. Wedid this by focusing a standard resolution target through dissectedlenses and calculating their modulation transfer functions.The modulation transfer function (MTF) is the single most completeexpression of the resolving capabilities of a lens. Since theoptical and retinal capabilities of an eye are generally well-matched,we considered our measurements of cephalopod lens MTF to bea good proxy for their visual capabilities in vivo. In general,squid have optical capabilities comparable to other organismsgenerally assumed to have good vision, such as fish and birds.Surprisingly, the optical capability of the eye of Vampyroteuthisinfernalis rivals that of humans.  相似文献   

5.
Hydrothermal vents and hydrocarbon seeps in the deep ocean are rare oases fueled by chemosynthesis. Biological communities inhabiting these ecosystems are often distributed in widely separated habitats, raising intriguing questions on how these organisms achieve connectivity and whether habitat types facilitate intraspecific divergence. The deep-sea patellogastropod limpet Bathyacmaea nipponica that colonizes both vents and seeps across ∼2,400 km in the Northwest Pacific is a feasible model to answer these questions. We analyzed 123 individuals from four vents and three seeps using a comprehensive method incorporating population genomics and physical ocean modeling. Genome survey sequencing and genotyping-by-sequencing resulted in 9,838 single-nucleotide polymorphisms for population genomic analyses. Genetic divergence and demographic analyses revealed four habitat-linked (i.e., three seep and one vent) genetic groups, with the vent genetic group established via the opportunistic invasion of a few limpet larvae from a nearby seep genetic group. TreeMix analysis uncovered three historical seep-to-vent migration events. ADMIXTURE and divMigrate analyses elucidated weak contemporary gene flow from a seep genetic group to the vent genetic group. Physical ocean modeling underlined the potential roles of seafloor topography and ocean currents in shaping the genetic connectivity, contemporary migration, and local hybridization of these deep-sea limpets. Our study highlighted the power of integrating genomic and oceanographic approaches in deciphering the demography and diversification of deep-sea organisms. Given the increasing anthropogenic activities (e.g., mining and gas hydrate extraction) affecting the deep ocean, our results have implications for the conservation of deep-sea biodiversity and establishment of marine protected areas.  相似文献   

6.
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean''s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.  相似文献   

7.
Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and probably play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world's largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment, key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For Operationally Clustered Taxonomic Units (OCTUs) reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic data sets.  相似文献   

8.
Night‐time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0‐h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made.  相似文献   

9.
Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01′ S, 173°03′ E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study.  相似文献   

10.
Top pelagic predators such as tunas, sharks, marine turtlesand mammals have historically been difficult to study due totheir large body size and vast range over the oceanic habitat.In recent years the development of small microprocessor-baseddata storage tags that are surgically implanted or satellite-linkedprovide marine researchers a novel avenue for examining themovements, physiology and behaviors of pelagic animals in thewild. When biological and physical data obtained from the tagsare combined with satellite derived sea surface temperatureand ocean color data, the relationships between the movements,behaviors and physical ocean environment can be examined. Tag-bearingmarine animals can function as autonomous ocean profilers providingoceanographic data wherever their long migrations take them.The biologging science is providing ecological physiologistswith new insights into the seasonal movements, habitat utilization,breeding behaviors and population structures in of marine vertebrates.In addition, the data are revealing migration corridors, hotspots and physical oceanographic patterns that are key to understandinghow organisms such as bluefin tunas use the open ocean environment.In the 21st century as ecosystem degradation and global warmingcontinue to threaten the existence of species on Earth, thefield of physiological ecology will play a more pivotal rolein conservation biology.  相似文献   

11.
Deep pelagic biology   总被引:6,自引:0,他引:6  
The deep pelagic habitat is a vast volume of cold, dark water where food is scarce and bioluminescence is the principal source of light and communication. Understanding the adaptations that allow animals to successfully inhabit this daunting realm has been a difficult challenge because investigators have had to conduct their work remotely. Research in the deep water column is going through an essential transformation from indirect to direct methods as undersea vehicles provide unprecedented access, new capabilities, and new perspectives. Traditional methods have accurately documented the meso- and macro-scale zoogeographic patterns of micronekton and zooplankton, as well as their distribution and migration patterns in the vertical plane. The new in situ technologies have enabled advances in studies of behavior, physiology, and in particular, the role of gelatinous animals in deep pelagic ecology. These discoveries reveal a deep-water fauna that is complex and diverse and still very poorly known.  相似文献   

12.
How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES's main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments.  相似文献   

13.
Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.  相似文献   

14.
BACKGROUND: Recent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking. RESULTS: Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere. CONCLUSIONS: Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.  相似文献   

15.
This is a short review of the current understanding of the role of microorganisms in the biogeochemistry in the deep-sea benthic boundary layer (BBL) and sediment-water interface (SWI) of the NE Atlantic, the gaps in our knowledge and some suggestions of future directions. The BBL is the layer of water, often tens of meters thick, adjacent to the sea bed and with homogenous properties of temperature and salinity, which sometimes contains resuspended detrital particles. The SWI is the bioreactive interface between the water column and the upper 1 cm of sediment and can include a large layer of detrital material composed of aggregates that have sedimented from the upper mixed layer of the ocean. This material is biologically transformed, over a wide range of time scales, eventually forming the sedimentary record. To understand the microbial ecology of deep-sea bacteria, we need to appreciate the food supply in the upper ocean, its packaging, passage and transformation during the delivery to the sea bed, the seasonality of variability of the supply and the environmental conditions under which the deep-sea bacteria grow. We also need to put into a microbial context recent geochemical findings of vast reservoirs of intrinsically labile organic material sorped onto sediments. These may well become desorped, and once again available to microorganisms, during resuspension events caused by deep ocean currents. As biotechnologists apply their tools in the deep oceans in search of unique bacteria, an increasing knowledge and understanding of the natural processes undertaken and environmental conditions experienced by deep-sea bacteria will facilitate this exploitation.  相似文献   

16.
Life on the ocean’s surface connects worlds. From shallow waters to the deep sea, the open ocean to rivers and lakes, numerous terrestrial and marine species depend on the surface ecosystem and the organisms found therein. Organisms that live freely at the surface, termed “neuston,” include keystone organisms like the golden seaweed Sargassum that makes up the Sargasso Sea, floating barnacles, snails, nudibranchs, and cnidarians. Many ecologically and economically important fish species live as or rely upon neuston. Species at the surface are not distributed uniformly; the ocean’s surface harbors unique neustonic communities and ecoregions found at only certain latitudes and only in specific ocean basins. But the surface is also on the front line of climate change and pollution. Despite the diversity and importance of the ocean’s surface in connecting disparate habitats, and the risks it faces, we know very little about neustonic life. This Essay will introduce you to the neuston, their connections to diverse habitats, the threats they face, and new opportunities for research and discovery at the air-sea interface.

The mysterious ’neuston’ ecosystem at the ocean’s surface includes keystone organisms like the golden seaweed Sargassum that makes up the Sargasso Sea, floating barnacles, snails, nudibranchs, and cnidarians; this Essay explores threats to its wellbeing and the importance of further research.  相似文献   

17.
In recent years, much attention has been paid to the Antarctic epipelagic fauna, as a result of the desire to increase our knowledge of ecosystem function and resource management. Unfortunately, our understanding of the polar pelagic deep-sea has not progressed as fast, and in common with many other parts of the world's deep ocean, knowledge is still fragmentary. As yet, we have an incomplete but evolving knowledge of species presence and distribution, but very little idea of how the extreme seasonality seen in the Southern Ocean might influence the deep-water fauna. An examination is made of species distribution and diversity, in relation to the latitudinal cline seen in many benthic groups, and the historical perspective offered by changing circulation patterns and sea temperature through geological time. Although a number of important frontal systems are found within the circumpolar Southern Ocean, the boundary is marked by the Sub-Tropical Convergence, which appears to be the major biogeographic boundary between it and surrounding provinces. Evidence for seasonality in various families is reviewed in light of what we know and can infer about their biology and particularly in respect of their bathymetric distribution, which in some groups appears to change with latitude.  相似文献   

18.
Notes on the biology of sea ice in the Arctic and Antarctic   总被引:1,自引:0,他引:1  
The sea ice which covers large areas of the polar regions plays a major role in the marine ecosystem of both the Arctic and Southern Oceans. Not only do warmblooded animals depend on sea ice as a platform, but the sympagic organisms living internally within the sea ice or at the interfaces ice/snow and ice/water provide a substantial part of the total primary production of the ice covered regions. In addition sea ice organisms are an important food source for a variety of pelagic animals and may initiate phytoplankton spring blooms after ice melt by seeding effects.Sea ice organisms often are enriched by some orders of magnitude if the same volume of melted ice is compared to that of the underlying water column. Three hypotheses try to explain this discrepancy and are discussed. Investigations on the nutrient chemistry within the sea ice system and in-situ observations still are rare. Intense growth of sympagic organisms can result in nutrient deficiencies, at least in selected habitats. Advances in endoscopie methods may lead to a better understanding of the life within the sea ice.Paper presented at the Symposium on Polar regions: the challenge for biological and ecological research organised by the Swiss Committee for Polar Research, Basel on 2 October 1992  相似文献   

19.

Background

Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity.

Methodology/Principal Findings

We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented.

Conclusions/Significance

The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity''s big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth''s largest ecosystem.  相似文献   

20.
Cladophora glomerata (L.) Kütz. is, potentially, the most widely distributed macroalga throughout the world’s freshwater ecosystems. C. glomerata has been described throughout North America, Europe, the Atlantic Islands, the Caribbean Islands, Asia, Africa, Australia and New Zealand, and the Pacific Islands. Cladophora blooms were a common feature of the lower North American Great Lakes (Erie, Michigan, Ontario) from the 1950s through the early 1980s and were largely eradicated through the implementation of a multibillion‐dollar phosphorus (P) abatement program. The return of widespread blooms in these lakes since the mid‐1990s, however, was not associated with increases in P loading. Instead, current evidence indicates that the resurgence in blooms was directly related to ecosystem level changes in substratum availability, water clarity, and P recycling associated with the establishment of dense colonies of invasive dreissenid mussels. These results support the hypothesis that dreissenid mussel invasions may induce dramatic shifts in energy and nutrient flow from pelagic zones to the benthic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号