首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STIM1 and Orai1 have recently been identified to be crucial in the regulation of store-operated Ca(2+) entry. However, it remains to be established how STIM1 couples store depletion to the functioning of Orai1 in the plasma membrane. Using quantitative measurement, we find little STIM1 on the surface membrane which is not increased by store depletion. We further demonstrate that Orai1 assembles into clusters that co-localize with STIM1 aggregations upon store depletion. The clustering of Orai1 is only seen when Oari1 are co-expressed with STIM1, but not when expressed alone. Moreover, ER retreat from cell periphery leads to mismatching of Orai1 and STIM1 puncta. Therefore, we propose that store depletion causes aggregation and translocation of STIM1 in close apposition to the plasma membrane, which in turn recruits Orai1 in the plasma membrane to the sites of STIM1 aggregates to assemble functional units of CRAC channels in a stoichiometric manner.  相似文献   

2.
Substantial progress has been made in the past several years in establishing the stoichiometries of STIM and Orai proteins and understanding their influence on store-operated calcium entry. Depletion of ER Ca2+ triggers STIM1 to accumulate at ER-plasma membrane junctions where it binds and opens Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 is a dimer, and release of Ca2+ from its two luminal domains is reported to promote their association as well as drive formation of higher-order STIM1 oligomers. The CRAC channel, originally thought to be tetrameric, is now considered to be a hexamer of Orai1 subunits based on crystallographic and electrophysiological studies. STIM1 binding activates CRAC channels in a highly nonlinear way, such that all six Orai1 binding sites must be occupied to account for the activation and signature properties of native channels. The structural basis of STIM1 engagement with the channel is currently unclear, with evidence suggesting that STIM1 dimers bind to individual or pairs of Orai1 subunits. This review examines evidence that has led to points of consensus and debate about STIM1 and Orai1 stoichiometries, and explains the importance of STIM-Orai complex stoichiometry for the regulation of store-operated calcium entry.  相似文献   

3.
The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration.  相似文献   

4.
The Ca2+ release-activated Ca2+ (CRAC) channel pore is formed by Orai1 and gated by STIM1 after intracellular Ca2+ store depletion. To resolve how many STIM1 molecules are required to open a CRAC channel, we fused different numbers of Orai1 subunits with functional two-tandem cytoplasmic domains of STIM1 (residues 336-485, designated as S domain). Whole-cell patch clamp recordings of these chimeric molecules revealed that CRAC current reached maximum at a stoichiometry of four Orai1 and eight S domains. Further experiments indicate that two-tandem S domains specifically interact with the C-terminus of one Orai1 subunit, and CRAC current can be gradually increased as more Orai1 subunits can interact with S domains or STIM1 proteins. Our data suggest that maximal opening of one CRAC channel requires eight STIM1 molecules, and support a model that the CRAC channel activation is not in an “all-or-none” fashion but undergoes a graded process via binding of different numbers of STIM1.  相似文献   

5.
6.
《Cell calcium》2015,57(6):482-492
The coupling of ER Ca2+-sensing STIM proteins and PM Orai Ca2+ entry channels generates “store-operated” Ca2+ signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200 nM) 100-fold lower than 2-APB. Unlike 2-APB, DPB162-AE does not affect L-type or TRPC channels or Ca2+ pumps at maximal STIM1–Orai1 blocking levels. DPB162-AE blocks STIM1-induced Orai1 or Orai2, but does not block Orai3 or STIM2-mediated effects. We narrowed the DPB162-AE site of action to the STIM–Orai activating region (SOAR) of STIM1. DPB162-AE does not prevent the SOAR–Orai1 interaction but potently blocks SOAR-mediated Orai1 channel activation, yet its action is not as an Orai1 channel pore blocker. Using the SOAR-F394H mutant which prevents both physical and functional coupling to Orai1, we reveal DPB162-AE rapidly restores SOAR–Orai binding but only slowly restores Orai1 channel-mediated Ca2+ entry. With the same SOAR mutant, 2-APB induces rapid physical and functional coupling to Orai1, but channel activation is transient. We infer that the actions of both 2-APB and DPB162-AE are directed toward the STIM1–Orai1 coupling interface. Compared to 2-APB, DPB162-AE is a much more potent and specific STIM1/Orai1 functional uncoupler. DPB162-AE provides an important pharmacological tool and a useful mechanistic probe for the function and coupling between STIM1 and Orai1 channels.  相似文献   

7.
Polarized Ca2+ signals in secretory epithelial cells are determined by compartmentalized localization of Ca2+ signaling proteins at the apical pole. Recently the ER Ca2+ sensor STIM1 (stromal interaction molecule 1) and the Orai channels were shown to play a critical role in store‐dependent Ca2+ influx. STIM1 also gates the transient receptor potential‐canonical (TRPC) channels. Here, we asked how cell stimulation affects the localization, recruitment and function of the native proteins in polarized cells. Inhibition of Orai1, STIM1, or deletion of TRPC1 reduces Ca2+ influx and frequency of Ca2+ oscillations. Orai1 localization is restricted to the apical pole of the lateral membrane. Surprisingly, cell stimulation does not lead to robust clustering of native Orai1, as is observed with expressed Orai1. Unexpectedly, cell stimulation causes polarized recruitment of native STIM1 to both the apical and lateral regions, thus to regions with and without Orai1. Accordingly, STIM1 and Orai1 show only 40% colocalization. Consequently, STIM1 shows higher colocalization with the basolateral membrane marker E‐cadherin than does Orai1, while Orai1 showed higher colocalization with the tight junction protein ZO1. TRPC1 is expressed in both apical and basolateral regions of the plasma membrane. Co‐IP of STIM1/Orai1/IP3 receptors (IP3Rs)/TRPCs is enhanced by cell stimulation and disrupted by 2‐aminoethoxydiphenyl borate (2APB). The polarized localization and recruitment of these proteins results in preferred Ca2+ entry that is initiated at the apical pole. These findings reveal that in addition to Orai1, STIM1 likely regulates other Ca2+ permeable channels, such as the TRPCs. Both channels contribute to the frequency of [Ca2+] oscillations and thus impact critical cellular functions.  相似文献   

8.
9.
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.  相似文献   

10.
The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration.  相似文献   

11.
Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.  相似文献   

12.
13.
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in miscellaneous cell types. The transient receptor potential canonical 1 (TRPC1) is the first member of the TRPC channel subfamily to be identified as a molecular component of SOCE. While TRPC1 has been shown to contribute to SOCE and regulate various functions in many cells, none of the reported TRPC1-mediated currents resembled ICRAC, the highly Ca2+-selective store-dependent current first identified in lymphocytes and mast cells. Almost a decade after the cloning of TRPC1 two proteins were identified as the primary components of the CRAC channel. The first, STIM1, is an ER-Ca2+ sensor protein involved in activating SOCE. The second, Orai1 is the pore-forming component of the CRAC channel. Co-expression of STIM1 and Orai1 generated robust ICRAC. Importantly, STIM1 was shown to also activate TRPC1 via its C-terminal polybasic domain, which is distinct from its Orai1-activating domain, SOAR. In addition, TRPC1 function critically depends on Orai1-mediated Ca2+ entry which triggers recruitment of TRPC1 into the plasma membrane where it is then activated by STIM1. TRPC1 and Orai1 form discrete STIM1-gated channels that generate distinct Ca2+ signals and regulate specific cellular functions. Surface expression of TRPC1 can be modulated by trafficking of the channel to and from the plasma membrane, resulting in changes to the phenotype of TRPC1-mediated current and [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1 following store depletion. This review will summarize the important findings that underlie the current concepts for activation and regulation of TRPC1, as well as its impact on cell function.  相似文献   

14.
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and in turn, initiates store-operated Ca2+ entry (SOCE), one of the major mechanisms to raise the intracellular Ca2+ concentrations in T cells. Ca2+-release-activated-Ca2+ (CRAC) channels are a prototype of store-operated Ca2+ (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca2+ sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca2+ signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.  相似文献   

15.
Orai1 and STIM1 have been identified as the main determinants of the store-operated Ca2+ entry (SOCE). Their specific roles in SOCE and their molecular interactions have been studied extensively following heterologous overexpression or molecular knockdown and extrapolated to the endogenous processes in naïve cells. Using molecular and imaging techniques, we found that variation of expression levels of Orai1 or STIM1 can significantly alter expression and role of some endogenous regulators of SOCE. Although functional inhibition of Ca2+-independent phospholipase A2 β (iPLA2β or PLA2g6A), or depletion of plasma membrane cholesterol caused a dramatic loss of endogenous SOCE in HEK293 cells, these effects were attenuated significantly when either Orai1 or STIM1 were overexpressed. Molecular knockdown of iPLA2β impaired SOCE in both control cells and cells overexpressing STIM1. We also discovered important cross-talk between expression of Orai1 and a specific plasma membrane variant of iPLA2β but not STIM1. These data confirm the role of iPLA2β as an essential mediator of endogenous SOCE and demonstrate that its physiological role can be obscured by Orai1 and STIM1 overexpression.  相似文献   

16.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

17.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

18.
Calcium flux through store-operated calcium entry is a central regulator of intracellular calcium signaling. The two key components of the store-operated calcium release-activated calcium channel are the Ca2+-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. During store-operated calcium entry activation, calcium depletion from the endoplasmic reticulum triggers a series of conformational changes in STIM1 that unmask a minimal Orai1-activating domain (CRAC activation region (CAD)). To gate Orai1 channels, the exposed STIM1-activating domain binds to two sites in Orai1, one in the N terminus and one in the C terminus. Whether the two sites operate as distinct binding domains or cooperate in CAD binding is unknown. In this study, we show that the N and C-terminal domains of Orai1 synergistically contribute to the interaction with STIM1 and couple STIM1 binding with channel gating and modulation of ion selectivity.  相似文献   

19.
We previously demonstrated that differentiated retinal pigment epithelial (RPE) cells express high levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), and a critical balance between VEGF and PEDF is important to prevent the development of choroidal neovascularization. We report here that VEGF secreted by RPE cells upregulates PEDF expression via VEGFR-1 in an autocrine manner. PEDF mRNA and protein expression was downregulated by neutralizing antibody against VEGF in differentiated human RPE cells. VEGFR-1 neutralization decreased PEDF mRNA and protein expression whereas anti-VEGFR-2 antibody had no effect. Addition of placenta growth factor (PlGF) restored PEDF expression in the presence of anti-VEGF antibody. These results demonstrate a regulatory interaction between angiogenesis stimulators and inhibitors to maintain homeostasis in normal human retina.  相似文献   

20.
Membrane potential and ionic currents were studied in cultured rabbit retinal pigment epithelial (RPE) cells using whole-cell patch clamp and perforated-patch recording techniques. RPE cells exhibited both outward and inward voltage-dependent currents and had a mean membrane capacitance of 26±12 pF (sd, n=92). The resting membrane potential averaged ?31±15 mV (n=37), but it was as high as ?60 mV in some cells. When K+ was the principal cation in the recording electrode, depolarization-activated outward currents were apparent in 91% of cells studied. Tail current analysis revealed that the outward currents were primarily K+ selective. The most frequently observed outward K+ current was a voltage- and time-dependent outward current (I K) which resembled the delayed rectifier K+ current described in other cells. I K was blocked by tetraethylammonium ions (TEA) and barium (Ba2+) and reduced by 4-aminopyridine (4-AP). In a few cells (3–4%), depolarization to ?50 mV or more negative potentials evoked an outwardly rectifying K+ current (I Kt) which showed more rapid inactivation at depolarized potentials. Inwardly rectifying K+ current (I KI) was also present in 41% of cells. I KI was blocked by extracellular Ba2+ or Cs+ and exhibited time-dependent decay, due to Na+ blockade, at negative potentials. We conclude that cultured rabbit RPE cells exhibit at least three voltage-dependent K+ currents. The K+ conductances reported here may provide conductive pathways important in maintaining ion and fluid homeostasis in the subretinal space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号