首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.  相似文献   

2.
A hallmark assumption of traditional approaches to disease modelling is that individuals within a given population mix uniformly and at random. However, this assumption does not always hold true; contact heterogeneity or preferential associations can have a substantial impact on the duration, size, and dynamics of epidemics. Contact heterogeneity has been readily adopted in epidemiological studies of humans, but has been less studied in wildlife. While contact network studies are becoming more common for wildlife, their methodologies, fundamental assumptions, host species, and parasites vary widely. The goal of this article is to review how contact networks have been used to study macro‐ and microparasite transmission in wildlife. The review will: (i) explain why contact heterogeneity is relevant for wildlife populations; (ii) explore theoretical and applied questions that contact networks have been used to answer; (iii) give an overview of unresolved methodological issues; and (iv) suggest improvements and future directions for contact network studies in wildlife.  相似文献   

3.
A dense population, global connectivity and frequent human–animal interaction give southern China an important role in the spread and emergence of infectious disease. However, patterns of person-to-person contact relevant to the spread of directly transmitted infections such as influenza remain poorly quantified in the region. We conducted a household-based survey of travel and contact patterns among urban and rural populations of Guangdong, China. We measured the character and distance from home of social encounters made by 1821 individuals. Most individuals reported 5–10 h of contact with around 10 individuals each day; however, both distributions have long tails. The distribution of distance from home at which contacts were made is similar: most were within a kilometre of the participant''s home, while some occurred further than 500 km away. Compared with younger individuals, older individuals made fewer contacts which tended to be closer to home. There was strong assortativity in age-based contact rates. We found no difference between the total number or duration of contacts between urban and rural participants, but urban participants tended to make contacts closer to home. These results can improve mathematical models of infectious disease emergence, spread and control in southern China and throughout the region.  相似文献   

4.
Increased risk of infectious disease is assumed to be a major cost of group living, yet empirical evidence for this effect is mixed. We studied whether larger social groups are more subdivided structurally. If so, the social subdivisions that form in larger groups may act as barriers to the spread of infection, weakening the association between group size and infectious disease. To investigate this ‘social bottleneck’ hypothesis, we examined the association between group size and four network structure metrics in 43 vertebrate and invertebrate species. We focused on metrics involving modularity, clustering, distance and centralization. In a meta-analysis of intraspecific variation in social networks, modularity showed positive associations with network size, with a weaker but still positive effect in cross-species analyses. Network distance also showed a positive association with group size when using intraspecific variation. We then used a theoretical model to explore the effects of subgrouping relative to other effects that influence disease spread in socially structured populations. Outbreaks reached higher prevalence when groups were larger, but subgrouping reduced prevalence. Subgrouping also acted as a ‘brake’ on disease spread between groups. We suggest research directions to understand the conditions under which larger groups become more subdivided, and to devise new metrics that account for subgrouping when investigating the links between sociality and infectious disease risk.  相似文献   

5.
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals’ network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group‐level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes.  相似文献   

6.
Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events.  相似文献   

7.
Animals use social information in a wide variety of contexts. Its extensive use by individuals to locate food patches has been documented in a number of species, and various mechanisms of discovery have been identified. However, less is known about whether individuals differ in their access to, and use of, social information to find food. We measured the social network of a wild population of three sympatric tit species (family Paridae) and then recorded individual discovery of novel food patches. By using recently developed methods for network-based diffusion analysis, we show that order of arrival at new food patches was predicted by social associations. Models based only on group searching did not explain this relationship. Furthermore, network position was correlated with likelihood of patch discovery, with central individuals more likely to locate and use novel foraging patches than those with limited social connections. These results demonstrate the utility of social network analysis as a method to investigate social information use, and suggest that the greater probability of receiving social information about new foraging patches confers a benefit on more socially connected individuals.  相似文献   

8.
9.
This theme issue has highlighted the links between sociality, health and fitness in a broad range of organisms, and with approaches that include field and captive studies of animals, comparative and meta-analyses, theoretical modelling and clinical and psychological studies of humans. In this concluding chapter, we synthesize the results of these diverse studies into some of the key concepts discussed in this issue, focusing on risks of infectious disease through social contact, the effects of competition in groups on susceptibility to disease, and the integration of sociality into research on life-history trade-offs. Interestingly, the studies in this issue both support pre-existing hypotheses, and in other ways challenge those hypotheses. We focus on unexpected results, including a lack of association between ectoparasites and fitness and weak results from a meta-analysis of the links between dominance rank and immune function, and place these results in a broader context. We also review relevant topics that were not covered fully in this theme issue, including self-medication and sickness behaviours, society-level defences against infectious disease, sexual selection, evolutionary medicine, implications for conservation biology and selective pressures on parasite traits. We conclude by identifying general open questions to stimulate and guide future research on the links between sociality, health and fitness.  相似文献   

10.
Successful social behavior can directly influence an individual's reproductive success. Therefore, many organisms readily modify social behavior based on past experience. The neural changes induced by social experience, however, remain to be fully elucidated. We hypothesize that social modulation of neural systems not only occurs at the level of individual nuclei, but also of functional networks, and their relationships with behavior. We used the green anole lizard (Anolis carolinensis), which displays stereotyped, visually triggered social behaviors particularly suitable for comparisons of multiple functional networks in a social context, to test whether repeated aggressive interactions modify behavior and metabolic activity in limbic-hypothalamic and sensory forebrain regions, assessed by quantitative cytochrome oxidase (a slowly accumulating endogenous metabolic marker) histochemistry. We found that aggressive interactions potentiate aggressive behavior, induce changes in activities of individual nuclei, and organize context-specific functional neural networks. Surprisingly, this experiential effect is not only present in a limbic-hypothalamic network, but also extends to a sensory forebrain network directly relevant to the behavioral expression. Our results suggest that social experience modulates organisms' social behavior via modifying sensory and limbic neural systems in parallel both at the levels of individual regions and networks, potentially biasing perceptual as well as limbic processing.  相似文献   

11.
Abstract

I propose an analytical model to combine macro-sociological aspects of cultural boundary making with socio-psychological research on social influence networks. This model will help me investigate how the understanding of citizenship of Swiss local politicians is influenced by their interactions with their colleagues in the course of naturalization processes. I argue that the decision-making processes, and debates involving criteria for naturalization, have an impact on individuals’ understandings of citizenship. First, I will invoke Wimmer's (2002 Wimmer , Andreas 2002 Nationalist Exclusion and Ethnic Conflict: Shadows of Modernity , Cambridge : Cambridge University Press [Crossref] [Google Scholar]) theory on cultural negotiation processes and cultural compromise, to lay the basis for a better understanding of how individual national identities converge. I will then extend my analytical model with theories in social psychology that discuss attitude and norm formations, as well as network theories of social influence, in order to understand why even politicians with strong opinions change their attitudes. The empirical part of the article draws on 180 interviews with Swiss local politicians.  相似文献   

12.
Although theoretical models consider social networks as pathways for disease transmission, strong empirical support, particularly for indirectly transmitted parasites, is lacking for many wildlife populations. We found multiple genetic strains of the enteric bacterium Salmonella enterica within a population of Australian sleepy lizards (Tiliqua rugosa), and we found that pairs of lizards that shared bacterial genotypes were more strongly connected in the social network than were pairs of lizards that did not. In contrast, there was no significant association between spatial proximity of lizard pairs and shared bacterial genotypes. These results provide strong correlative evidence that these bacteria are transmitted from host to host around the social network, rather than that adjacent lizards are picking up the same bacterial genotype from some common source.  相似文献   

13.
14.
传粉网络的研究进展:网络的结构和动态   总被引:1,自引:0,他引:1  
方强  黄双全 《生物多样性》2012,20(3):300-307
植物与传粉者之间相互作用,构成了复杂的传粉网络。近年来,社会网络分析技术的发展使得复杂生态网络的研究成为可能。从群落水平上研究植物与传粉者之间的互惠关系,为理解群落的结构和动态以及花部特征的演化提供了全新的视角。传粉网络的嵌套结构说明自然界的传粉服务存在冗余,而且是相对泛化的物种主导了传粉。在多年或者多季度的传粉网络中,虽然有很高的物种替换率,但是其网络结构仍然保持相对稳定,说明传粉网络对干扰有很强的抗性。尽管有关网络结构和动态的研究逐渐增多,但传粉网络维持的机制仍不清楚。网络结构可以部分由花部特征与传粉者的匹配来解释,也受到系统发生的制约,影响因素还包括群落构建的时间和物种多样性,以及物种在群落中的位置。开展大尺度群落动态的研究,为探索不同时间尺度、不同物种多样性水平上的传粉网络的生态学意义提供了条件。但已有的研究仍存在不足,比如基于访问观察的网络无法准确衡量传粉者的访问效率和植物间的花粉流动,以及结果受到调查精度区域研究不平衡的制约等。目前的研究只深入到传粉者携带花粉构成成分的水平,传粉者访问植物的网络不能代表植物的整个传粉过程。因此,研究应当更多地深入到物种之间关系对有性生殖的切实影响上。  相似文献   

15.
16.
Abstract.  The popular, but rarely documented, view in Britain is that ticks have increased in distribution and abundance over recent years. To assess this, we gathered evidence for changes in tick distribution and abundance by distributing a survey questionnaire throughout Britain and by analysing trends in the prevalence of tick infestation on red grouse chicks Lagopus lagopus scoticus Latham (Galliformes: Tetranoidae), gathered over 19 years at three Scottish sites, and on deer (Cetartiodactyla: Cervidae) culled over 11 years on 26 Ministry of Defence (MoD) estates. Based on the survey, the current known distribution of Ixodes ricinus Linnaeus (Acari: Ixodidae) has expanded by 17% in comparison with the previously known distribution. The survey indicated that people perceive there to be more ticks today than in the past at 73% of locations throughout Britain. Reported increases in tick numbers coincided spatially with perceived increases in deer numbers. At locations where both tick and deer numbers were reported to have increased, these perceived changes occurred at similar times, raising the possibility of a causal link. At other locations, tick numbers were perceived to have increased despite reported declines in deer numbers. The perceptions revealed by the survey were corroborated by quantitative data from red grouse chicks and culled deer. Tick infestation prevalence increased over time on all grouse moors and 77% of MoD estates and decreased at six locations.  相似文献   

17.
Abstract.  The methods used for the control of sheep blowfly strike (ovine cutaneous myiasis) and the farm management factors associated with strike prevalence were examined using data from questionnaire survey returns provided by 966 sheep farmers in Great Britain, based on the period between March 2003 and February 2004. Overall, 91% of participants treated prophylactically with insecticides against blowfly strike; 39% treated twice and 11% treated more than three times in the year. Insect growth regulators (IGRs) were the most commonly chosen product (40%), especially the IGR cyromazine. Only 12% of farmers opted to dip their sheep in organophosphate insecticide against fly strike and 2% of farmers reported applying inappropriate products against strike to their sheep, such as ivermectin or 'drenches'. Farmers worming their ewes more often were 0.8 times less likely to report blowfly strike, but those who wormed their lambs more often were 1.2 times more likely to report strike. Pure-breed flocks were 0.7 times less likely to record an outbreak of blowfly strike than cross-breed flocks. Strike was less likely in ewe flocks grazed at higher altitude; however, this relationship with altitude was not seen in lambs. The results show that insecticides remain the primary tool used by almost all farmers to prevent strike and that the type of insecticides used and means of application have altered dramatically over the past 15 years. However, the prevalence of strike has remained almost unchanged over this period. Clearly careful attention to the type and timing of insecticide application, in association with a detailed understanding of the husbandry factors that predispose sheep to higher strike risk, is essential to allow the optimal management of strike problems.  相似文献   

18.
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms.  相似文献   

19.
In most eusocial insects, the division of labor results in relatively few individuals foraging for the entire colony. Thus, the survival of the colony depends on its efficiency in meeting the nutritional needs of all its members. Here, we characterize the network topology of a eusocial insect to understand the role and centrality of each caste in this network during the process of food dissemination. We constructed trophallaxis networks from 34 food-exchange experiments in black garden ants (Lasius niger). We tested the influence of brood and colony size on (i) global indices at the network level (i.e., efficiency, resilience, centralization, and modularity) and (ii) individual values (i.e., degree, strength, betweenness, and the clustering coefficient). Network resilience, the ratio between global efficiency and centralization, was stable with colony size but increased in the presence of broods, presumably in response to the nutritional needs of larvae. Individual metrics highlighted the major role of foragers in food dissemination. In addition, a hierarchical clustering analysis suggested that some domestics acted as intermediaries between foragers and other domestics. Networks appeared to be hierarchical rather than random or centralized exclusively around foragers. Finally, our results suggested that networks emerging from social insect interactions can improve group performance and thus colony fitness.  相似文献   

20.
Heterogeneity in social interactions can have important consequences for the spread of information and diseases and consequently conservation and invasive species management. Common carp (Cyprinus carpio) are a highly social, ubiquitous, and invasive freshwater fish. Management strategies targeting foraging carp may be ideal because laboratory studies have suggested that carp can learn, have individual personalities, a unique diet, and often form large social groups. To examine social feeding behaviors of wild carp, we injected 344 carp with passive integrated transponder (PIT) tags and continuously monitored their feeding behaviors at multiple sites in a natural lake in Minnesota, USA. The high‐resolution, spatio‐temporal data were analyzed using a Gaussian mixture model (GMM). Based on these associations, we analyzed group size, feeding bout duration, and the heterogeneity and connectivity of carp social networks at foraging sites. Wild carp responded quickly to bait, forming aggregations most active from dusk to dawn. During the 2020 baiting period (20 days), 133 unique carp were detected 616,593 times. There was some evidence that feeding at multiple sites was constrained by basin geography, but not distance alone. GMM results suggested that feeding bouts were short, with frequent turnover of small groups. Individual foraging behavior was highly heterogeneous with Gini coefficients of 0.79 in 2020 and 0.66 in 2019. “Superfeeders”—those contributing to 80% of total cumulative detections (top 18% and top 29% of foragers in 2020 and 2019 respectively)—were more likely to be detected earlier at feeding stations, had larger body sizes, and had higher network measures of degree, weighted degree, and betweenness than non‐superfeeders. Overall, our results indicate that wild carp foraging is social, easily induced by bait, dominated by large‐bodied individuals, and potentially predictable, which suggests social behaviors could be leveraged in management of carp, one of the world''s most recognizable and invasive fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号