首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.  相似文献   

2.
Members of the tripartite interaction motif (TRIM) family of E3 ligases are emerging as critical regulators of innate immunity. To identify new regulators, we carried out a screen of 43 human TRIM proteins for the ability to activate NF-κB, AP-1, and interferon, hallmarks of many innate immune signaling pathways. We identified 16 TRIM proteins that induced NF-κB and/or AP-1. We found that one of these, TRIM62, functions in the TRIF branch of the TLR4 signaling pathway. Knockdown of TRIM62 in primary macrophages led to a defect in TRIF-mediated late NF-κB, AP-1, and interferon production after lipopolysaccharide challenge. We also discovered a role for TRIM15 in the RIG-I-mediated interferon pathway upstream of MAVS. Knockdown of TRIM15 limited virus/RIG-I ligand-induced interferon production and enhanced vesicular stomatitis virus replication. In addition, most TRIM proteins previously identified to inhibit murine leukemia virus (MLV) demonstrated an ability to induce NF-κB/AP-1. Interfering with the NF-κB and AP-1 signaling induced by the antiretroviral TRIM1 and TRIM62 proteins rescued MLV release. In contrast, human immunodeficiency virus type 1 (HIV-1) gene expression was increased by TRIM proteins that induce NF-κB. HIV-1 resistance to inflammatory TRIM proteins mapped to the NF-κB sites in the HIV-1 long terminal repeat (LTR) U3 and could be transferred to MLV. Thus, our work identifies new TRIM proteins involved in innate immune signaling and reinforces the striking ability of HIV-1 to exploit innate immune signaling for the purpose of viral replication.  相似文献   

3.
4.
5.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3–6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.  相似文献   

6.
The cytoplasmic TRIM5α proteins of certain mammalian lineages efficiently recognize the incoming capsids of particular retroviruses and potently restrict infection in a species-specific manner. Successful retroviruses have evolved capsids that are less efficiently recognized by the TRIM5α proteins of the natural hosts. To address whether TRIM5α contributes to the outcome of retroviral infection in a susceptible host species, we investigated the impact of TRIM5 polymorphisms in rhesus monkeys on the course of a simian immunodeficiency virus (SIV) infection. Full-length TRIM5α cDNAs were derived from each of 79 outbred monkeys and sequenced. Associations were explored between the expression of particular TRIM5 alleles and both the permissiveness of cells to SIV infection in vitro and clinical sequelae of SIV infection in vivo. Natural variation in the TRIM5α B30.2(SPRY) domain influenced the efficiency of SIVmac capsid binding and the in vitro susceptibility of cells from the monkeys to SIVmac infection. We also show the importance in vivo of the interaction of SIVmac with different allelic forms of TRIM5, demonstrating that particular alleles are associated with as much as 1.3 median log difference in set-point viral loads in SIVmac-infected rhesus monkeys. Moreover, these allelic forms of TRIM5 were associated with the extent of loss of central memory (CM) CD4+ T cells and the rate of progression to AIDS in the infected monkeys. These findings demonstrate a central role for TRIM5α in limiting the replication of an immunodeficiency virus infection in a primate host.  相似文献   

7.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   

8.
9.
Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen.  相似文献   

10.
11.
Nucleoprotein (N) is an immunodominant antigen in many enveloped virus infections. While the diagnostic value of anti‐N antibodies is clear, their role in immunity is not. This is because while they are non‐neutralising, they somehow clear infection by coronavirus, influenza and LCMV in vivo. Here, we show that anti‐N immune protection is mediated by the cytosolic Fc receptor and E3 ubiquitin ligase TRIM21. Exploiting LCMV as a model system, we demonstrate that TRIM21 uses anti‐N antibodies to target N for cytosolic degradation and generate cytotoxic T cells (CTLs) against N peptide. These CTLs rapidly eliminate N‐peptide‐displaying cells and drive efficient viral clearance. These results reveal a new mechanism of immune synergy between antibodies and T cells and highlights N as an important vaccine target.  相似文献   

12.
The tripartite motif (TRIM) protein, TRIM5α, is an endogenous factor in primates that recognizes the capsids of certain retroviruses after virus entry into the host cell. TRIM5α promotes premature uncoating of the capsid, thus blocking virus infection. Low levels of expression and tendencies to aggregate have hindered the biochemical, biophysical, and structural characterization of TRIM proteins. Here, a chimeric TRIM5α protein (TRIM5Rh-21R) with a RING domain derived from TRIM21 was expressed in baculovirus-infected insect cells and purified. Although a fraction of the TRIM5Rh-21R protein formed large aggregates, soluble fractions of the protein formed oligomers (mainly dimers), exhibited a protease-resistant core, and contained a high percentage of helical secondary structure. Cross-linking followed by negative staining and electron microscopy suggested a globular structure. The purified TRIM5Rh-21R protein displayed E3-ligase activity in vitro and also self-ubiquitylated in the presence of ubiquitin-activating and -conjugating enzymes. The purified TRIM5Rh-21R protein specifically associated with human immunodeficiency virus type 1 capsid-like complexes; a deletion within the V1 variable region of the B30.2(SPRY) domain decreased capsid binding. Thus, the TRIM5Rh-21R restriction factor can directly recognize retroviral capsid-like complexes in the absence of other mammalian proteins.  相似文献   

13.
14.
Sindbis virus (SV) is an alphavirus that causes acute encephalomyelitis in mice. The outcome is determined by the strain of virus and by the age and genetic background of the host. The mortality rates after infection with NSV, a neurovirulent strain of SV, were as follows v: 81% (17 of 21) in BALB/cJ mice; 20% (4 of 20) in BALB/cByJ mice (P < 0.001); 100% in A/J, C57BL/6J, SJL, and DBA mice; and 79% (11 of 14) in immunodeficient scid/CB17 mice. Treatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthetase (NOS) inhibitor, increased mortality to 100% (P < 0.05) in NSV-infected BALB/cJ mice, to 95% (P < 0.001) in BALB/cByJ mice, and to 100% in scid/CB17 mice. BALB/cJ and BALB/cByJ mice had similar levels of inducible NOS mRNA in their brains, which were not affected by L-NAME or NSV infection. Brain NOS activity was similar in BALB/cJ and BALB/cByJ mice before and after infection and was markedly inhibited by L-NAME. NSV replication in the brains of BALB/cJ mice, BALB/cByJ mice, and mice treated with L-NAME was similar. Treatment of N18 neuroblastoma cells with NO donors S-nitroso-N-acetylpenicillamine or sodium nitroprusside in vitro before infection increased cell viability at 42 to 48 h compared with untreated NSV-infected N18 cells with little effect on virus replication. These data suggest that NO protects mice from fatal encephalitis by a mechanism that does not directly involve the immune response or inhibition of virus growth but rather may enhance survival of the infected neuron until the immune response can control virus replication.  相似文献   

15.
16.
TRIM5α has been shown to be a major postentry determinant of the host range for gammaretroviruses and lentiviruses and, more recently, spumaviruses. However, the restrictive potential of TRIM5α against other retroviruses has been largely unexplored. We sought to determine whether or not Mason-Pfizer monkey virus (M-PMV), a prototype betaretrovirus isolated from rhesus macaques, was sensitive to restriction by TRIM5α. Cell lines from both Old World and New World primate species were screened for their susceptibility to infection by vesicular stomatitis virus G protein pseudotyped M-PMV. All of the cell lines tested that were established from Old World primates were found to be susceptible to M-PMV infection. However, fibroblasts established from three New World monkey species specifically resisted infection by this virus. Exogenously expressing TRIM5α from either tamarin or squirrel monkeys in permissive cell lines resulted in a block to M-PMV infection. Restriction in the resistant cell line of spider monkey origin was determined to occur at a postentry stage. However, spider monkey TRIM5α expression in permissive cells failed to restrict M-PMV infection, and interference with endogenous TRIM5α in the spider monkey fibroblasts failed to relieve the block to infectivity. Our results demonstrate that TRIM5α specificity extends to betaretroviruses and suggest that New World monkeys have evolved additional mechanisms to restrict the infection of at least one primate betaretrovirus.  相似文献   

17.
Control of gammaherpesvirus infections requires a complex, well orchestrated immune response regulated by positive and negative co-signaling molecules. While the impact of co-stimulatory molecules has been addressed in various studies, the role of co-inhibitory receptors has not been tested. The ITIM-bearing CEACAM1 is an inhibitory receptor expressed by a variety of immune cells, including B, T and NK cells. Using Ceacam1−/− mice, we analyzed the in vivo function of CEACAM1 during acute and latent murine gammaherpesvirus 68 (MHV-68) infection. During acute lytic replication, we observed lower virus titers in the lungs of Ceacam1−/− mice than in WT mice. In contrast, during latency amplification, Ceacam1−/− mice displayed increased splenomegaly and a higher latent viral load in the spleen. Analysis of the immune response revealed increased virus-specific antibody levels in Ceacam1−/− mice, while the magnitude of the T cell-mediated antiviral immune response was reduced. These findings suggest that inhibitory receptors can modulate the efficacy of immune responses against gammaherpesvirus infections.  相似文献   

18.
Sakuma R  Mael AA  Ikeda Y 《Journal of virology》2007,81(18):10201-10206
Dominant, constitutively expressed antiretroviral factors, including TRIM5alpha and APOBEC3 proteins, are distinguished from the conventional innate immune systems and are classified as intrinsic immunity factors. Here, we demonstrate that interferon alpha (IFN-alpha) treatment upregulates TRIM5alpha mRNA in rhesus monkey cells, which correlates with the enhanced TRIM5alpha-mediated pre- and postintegration blocks of human immunodeficiency virus replication. In human cells, IFN-alpha increases the levels of TRIM5alpha mRNA, resulting in enhanced antiviral activity against N-tropic murine leukemia virus infection. These observations indicate that the TRIM5alpha-mediated antiviral effects can be orchestrated by the conventional innate immune response. It is conceivable that TRIM5alpha plays an essential role in controlling both the initial retroviral exposure and the subsequent viral dissemination in vivo.  相似文献   

19.
For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for development of therapeutic interventions against NiV infections.  相似文献   

20.
Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality in mice. We also generated RIG-I−/− × MDA5−/− double-knockout mice and found that a lack of both RLRs results in a complete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular patterns (PAMPs) containing 5′ triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in orchestrating an effective immune response against an acute viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号