首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Macrophages (MΦ) play an essential role in innate immune responses and can either display a pro-inflammatory, classically activated phenotype (M1) or undergo an alternative activation program (M2) promoting immune regulation. M-CSF is used to differentiate monocytes into MΦ and IFN-γ or IL-4+IL-13 to further polarize these cells towards M1 or M2, respectively. Recently, differentiation using only GM-CSF or M-CSF has been described to induce a M1- or M2-like phenotype, respectively. In this study, we combined both approaches by differentiating human MΦ in GM-CSF or M-CSF followed by polarization with either IFN-γ or IL-4+IL-13. We describe the phenotypic differences between CD14hi CD163hi CD206int FOLR2-expressing M-CSF MΦ and CD14lo CD163lo CD206hi GM-CSF MΦ but show that both macrophage populations reacted similarly to further polarization with IFN-γ or IL-4+IL-13 with up- and down-regulation of common M1 and M2 marker genes. We also show that high expression of the mannose receptor (CD206), a marker of alternative activation, is a distinct feature of GM-CSF MΦ. Changes of the chromatin structure carried out by chromatin modification enzymes (CME) have been shown to regulate myeloid differentiation. We analyzed the expression patterns of CME during MΦ polarization and show that M1 up-regulate the histone methyltransferase MLL and demethylase KDM6B, while resting and M2 MΦ were characterized by DNA methyltransferases and histone deacetylases. We demonstrate that MLL regulates CXCL10 expression and that this effect could be abrogated using a MLL-Menin inhibitor. Taken together we describe the distinct phenotypic differences of GM-CSF or M-CSF MΦ and demonstrate that MΦ polarization is regulated by specific epigenetic mechanisms. In addition, we describe a novel role for MLL as marker for classical activation. Our findings provide new insights into MΦ polarization that could be helpful to distinguish MΦ activation states.  相似文献   

2.
Noninvasive imaging atherosclerotic (AS) plaque is of great importance for early diagnosis. Recently, CD93 in MΦ was linked to atherosclerosis development. Herein, we have investigated whether CD93 in MΦ is a potential novel target for atherosclerotic plaque imaging. CD93hi and CD93lo MΦ were prepared with or without LPS stimulation, before biological activity was evaluated. A rat AS model was produced with left carotid artery clamped. Whole‐body/ex vivo phosphor autoradiography of the artery and biodistribution were investigated after incorporation of 3H‐2‐DG into CD93hi and CD93lo MΦ or after 125I‐α‐CD93 (125I‐anti‐CD93mAb) injection. The plaque tissue was subjected to CD93/CD68 immunofluorescence/immunohistochemistry staining. CD93hi and CD93lo MΦ cells were successfully prepared without significant effect on bioactivity after incorporative labelled with 3H‐2‐DG. The AS model was successfully established. Biodistribution studies showed that adoptive transfer of 3H‐2‐DG‐CD93hi MΦ or 125I‐ α‐CD93 injection resulted in accumulation of radioactivity within the atherosclerotic plaque in the clamped left carotid artery. T/NT (target/non‐target, left/right carotid artery) ratio was higher in the 3H‐2‐DG‐CD93hi MΦ adoptive transfer group than in the 3H‐2‐DG‐CD93lo MΦ group (p < .05). Plaque radioactivity in the 125I‐α‐CD93 injection group was significantly higher than in the 125I‐IgG control group (p < .01). The higher radioactivity accumulated in the clamped left carotid artery was confirmed by phosphor autoradiography. More importantly, CD93/CD68 double‐positive MΦ accumulated at the atherosclerotic plaque in 3H‐2‐DG‐CD93hi MΦ adoptive transfer group, which correlated with plaque radioactivity (r = .99, p < .01). In summary, both adoptive‐transferred 3H‐2‐DG‐labelled CD93hi MΦ and 125I‐α‐CD93 injection specifically targeted CD93 in atherosclerotic plaque. CD93 is a potential target in atherosclerotic plaque imaging.  相似文献   

3.
Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT.  相似文献   

4.
T-cell immunoglobulin mucin-3 (Tim-3) plays roles in the functional regulation of both adaptive and innate immune cells and is greatly involved in many diseases. However, the precise roles of Tim-3 on macrophages (Mφs) in pregnancy remain unstated. In the current study, we found the higher frequency of Tim-3+ decidual Mφs (dMφs) in response to trophoblasts. The reduced abundance of Tim-3 on Mφs was accompanied by disordered anti- and pro-inflammatory cytokine profiles in miscarriage. Adoptive transfer of Tim-3+Mφs, but not Tim-3Mφs, relieved murine embryo absorption induced by Mφ depletion. Our flow cytometry results and the extensive microarray analysis confirmed that Tim-3+ and Tim-3dMφs were neither precisely pro-inflammatory (M1) nor anti-inflammatory (M2) Mφs. However, with higher CD132 expression, Tim-3+dMφs subset induced Th2 and Treg bias in decidual CD4+T cells and promoted pregnancy maintenance. Blockade of Tim-3 or CD132 pathways leaded to the dysfunction of maternal-fetal tolerance and increased fetal loss. These findings underscored the important roles of Tim-3 in regulating dMφ function and maintaining normal pregnancy, and suggested that Tim-3 on Mφs is a potential biomarker for diagnosis of miscarriage. Our study also emphasized the importance of careful consideration of reproductive safety when choosing immune checkpoint blockade therapies in real world clinical care. Though IL-4 treated Tim-3Mφs could rescue the fetal resorption induced by Mφ depletion, whether IL-4 represent novel therapeutic strategy to prevent pregnancy loss induced by checkpoint inhibition still needs further research.Subject terms: Infertility, Translational immunology, Cell death and immune response  相似文献   

5.
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.  相似文献   

6.
Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαflox/deltaLysMCre mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80hiCD11bhi macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysMCre-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2loIL-4Rα+ macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2hiIL-4Rα+ macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.  相似文献   

7.
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.  相似文献   

8.
Macrophages (Mφs) play a crucial role in the development of atherosclerosis by engulfing modified LDL particles and forming foam cells, the hallmark of atherosclerosis. Many studies suggest that myeloperoxidase-oxidized LDL (Mox-LDL) is an important pathophysiological model for LDL modification in vivo. Classically (M1) and alternatively activated (M2) Mφs are both implicated in the process of atherogenesis. Mφs are highly plastic cells whereby they undergo repolarization from M1 to M2 and vice versa. Since little is known about the effects of Mox-LDL on Mφ polarization and repolarization, our study aimed at evaluating the in vitro effects of Mox-LDL at this level through making use of the well-established model of human THP-1-derived Mφs. Resting M0-Mφs were polarized toward M1- and M2-Mφs, then M0-, M1- and M2-Mφs were all treated with physiological concentrations of Mox-LDL to assess the effect of Mox-LDL treatment on Mφ polarization and repolarization. Treatment of M0-Mφs with a physiological concentration of Mox-LDL had no significant effects at the level of their polarization. However, treatment of M1-Mφs with Mox-LDL resulted in a significant reduction in their IL-10 cytokine secretion. Our results point to a potential role of Mox-LDL in increasing the pro-inflammatory state in Mφs through reducing the release of the anti-inflammatory cytokine, IL-10.  相似文献   

9.
10.
11.
IL-10 is a critical regulatory cytokine involved in the pathogenesis of visceral leishmaniasis caused by Leishmania donovani and clinical and experimental data indicate that disease progression is associated with expanded numbers of CD4+ IFNγ+ T cells committed to IL-10 production. Here, combining conditional cell-specific depletion with adoptive transfer, we demonstrate that only conventional CD11chi DCs that produce both IL-10 and IL-27 are capable of inducing IL-10-producing Th1 cells in vivo. In contrast, CD11chi as well as CD11cint/lo cells isolated from infected mice were capable of reversing the host protective effect of diphtheria toxin-mediated CD11c+ cell depletion. This was reflected by increased splenomegaly, inhibition of NO production and increased parasite burden. Thus during chronic infection, multiple CD11c+ cell populations can actively suppress host resistance and enhance immunopathology, through mechanisms that do not necessarily involve IL-10-producing Th1 cells.  相似文献   

12.
Mitochondrial activation and the production of mitochondrial reactive oxygen species (mROS) are crucial for CD4+ T cell responses and have a role in naïve cell signaling after TCR activation. However, little is known about mROS role in TCR-independent signaling and in recall responses. Here, we found that mROS are required for IL-12 plus IL-18-driven production of IFN-γ, an essential cytokine for inflammatory and autoimmune disease development. Compared to TCR stimulation, which induced similar levels of mROS in naïve and memory-like cells, IL-12/IL-18 showed faster and augmented mROS production in memory-like cells. mROS inhibition significantly downregulated IFN-γ and CD44 expression, suggesting a direct mROS effect on memory-like T cell function. The mechanism that promotes IFN-γ production after IL-12/IL-18 challenge depended on the effect of mROS on optimal activation of downstream signaling pathways, leading to STAT4 and NF-κB activation. To relate our findings to IFN-γ-driven lupus-like disease, we used Fas-deficient memory-like CD4+ T cells from lpr mice. Importantly, we found significantly increased IFN-γ and mROS production in lpr compared with parental cells. Treatment of WT cells with FasL significantly reduced mROS production and the activation of signaling events leading to IFN-γ. Moreover, Fas deficiency was associated with increased mitochondrial levels of cytochrome C and caspase-3 compared with WT memory-like cells. mROS inhibition significantly reduced the population of disease-associated lpr CD44hiCD62LloCD4+ T cells and their IFN-γ production. Overall, these findings uncovered a previously unidentified role of Fas/FasL interaction in regulating mROS production by memory-like T cells. This apoptosis-independent Fas activity might contribute to the accumulation of CD44hiCD62LloCD4+ T cells that produce increased IFN-γ levels in lpr mice. Overall, our findings pinpoint mROS as central regulators of TCR-independent signaling, and support mROS pharmacological targeting to control aberrant immune responses in autoimmune-like disease.Subject terms: Autoimmunity, Cytokines  相似文献   

13.
Peripheral CD4+CD8+ T cells have been identified as a T cell subset existing in animals and humans. However, the characterization of CD4+CD8+ T cells, their relationship with T memory (TM), T effector (TE), Th1/Th2, Treg and Th-17, remain unclear. This study was to characterize the CD4+CD8+ T cells. The results from human subjects showed that activated T cells were CD4+CD8+ T cells, comprised CD4hiCD8lo, CD4hiCD8hi and CD4loCD8hi subsets. They expressed CD62Lhi/lo, granzyme B (GrB), CD25, Foxp3, interleukin 17 (IL-17) and the cytokines of both Th1 and Th2, and had cytolytic function. These findings suggested that CD4+CD8+ T cells had over-lap function while they kept diversity, and that T cells could be divided into two major populations: activated and inactivated. Hence, the hypotheses of Th1/Th2, Treg and Th-17 might reflect the positive/negative feedback regulation of immune system. When compared to GrB+CD62Llo T effector (TE) cells, GrB+CD62Lhi T central memory effector (TCME) cells had a quicker response to virus without CD62L loss.  相似文献   

14.
Interleukin (IL-) 36 cytokines (previously designated as novel IL-1 family member cytokines; IL-1F5– IL-1F10) constitute a novel cluster of cytokines structurally and functionally similar to members of the IL-1 cytokine cluster. The effects of IL-36 cytokines in inflammatory lung disorders remains poorly understood. The current study sought to investigate the effects of IL-36α (IL-1F6) and test the hypothesis that IL-36α acts as a pro-inflammatory cytokine in the lung in vivo. Intratracheal instillation of recombinant mouse IL-36α induced neutrophil influx in the lungs of wild-type C57BL/6 mice and IL-1αβ−/− mice in vivo. IL-36α induced neutrophil influx was also associated with increased mRNA expression of neutrophil-specific chemokines CXCL1 and CXCL2 in the lungs of C57BL/6 and IL-1αβ−/− mice in vivo. In addition, intratracheal instillation of IL-36α enhanced mRNA expression of its receptor IL-36R in the lungs of C57BL/6 as well as IL-1αβ−/− mice in vivo. Furthermore, in vitro incubation of CD11c+ cells with IL-36α resulted in the generation of neutrophil-specific chemokines CXCL1, CXCL2 as well as TNFα. IL-36α increased the expression of the co-stimulatory molecule CD40 and enhanced the ability of CD11c+ cells to induce CD4+ T cell proliferation in vitro. Furthermore, stimulation with IL-36α activated NF-κB in a mouse macrophage cell line. These results demonstrate that IL-36α acts as a pro-inflammatory cytokine in the lung without the contribution of IL-1α and IL-1β. The current study describes the pro-inflammatory effects of IL-36α in the lung, demonstrates the functional redundancy of IL-36α with other agonist cytokines in the IL-1 and IL-36 cytokine cluster, and suggests that therapeutic targeting of IL-36 cytokines could be beneficial in inflammatory lung diseases.  相似文献   

15.
16.
Ansari A  Hasan Z  Dawood G  Hussain R 《PloS one》2011,6(11):e27848

Background

Mycobacterium tuberculosis infects nearly 1/3 of the world population and this reservoir forms the largest pool from which new cases arise. Among the cytokines, IFN-γ is a key determinant in protection against tuberculosis. Single nucleotide polymorphisms (SNPs) in IFN-γ gene (+874 T/A) which determine TT high (hi), AA low (lo) and TA intermediate (int) responder phenotypes have shown variable associations with tuberculosis disease outcome in different ethnic populations. The objective of the current study was to analyze IFN-γ gene combinations with other IFN-γ regulating cytokine genes (IL-10, TNF –α, IL-6) to see the effect of gene- combinations on disease severity outcome in pulmonary tuberculosis.

Methods and Findings

Study groups comprised of pulmonary TB patients stratified according to lung tissue involvement into mild (Pmd = 74) or advance (Pad = 23) lung disease and compared with healthy controls (TBNA = 166). Genotype analysis was carried out using amplification refractory mutation system-PCR (ARMS-PCR). IFN-γ gene (+874 T/A) functional SNP combinations in TNFα (−308 G/A), IL-10 (−1082 A/G) and IL-6 (−174 G/C) were analyzed. Single gene analysis (Pearson χ2) showed a dominant association of IFN-γ TT hi genotype (p = 0.001) and T allele (p = 0.001) with mild disease. IFN-γ lo -IL-10 lo genotype combination was associated with advanced disease (p = 0.002). IFN-γ hiIL-6 hi combination was associated with mild disease (p = 0.0005) while IFN-γ loIL-6 int was associated with protection against both forms of pulmonary disease (p = 0.002).

Conclusion

Our results show that a limited number of IFN-γ gene combinations with other cytokine functional SNPs determine the outcome of disease severity in tuberculosis.  相似文献   

17.
Reversible lysine acetylation plays an important role in the regulation of T cell responses. HDAC1 has been shown to control peripheral T helper cells, however the role of HDAC1 in CD8+ T cell function remains elusive. By using conditional gene targeting approaches, we show that LckCre-mediated deletion of HDAC1 led to reduced numbers of thymocytes as well as peripheral T cells, and to an increased fraction of CD8+CD4 cells within the CD3/TCRβlo population, indicating that HDAC1 is essential for the efficient progression of immature CD8+CD4 cells to the DP stage. Moreover, CD44hi effector CD8+ T cells were enhanced in mice with a T cell-specific deletion of HDAC1 under homeostatic conditions and HDAC1-deficient CD44hi CD8+ T cells produced more IFNγ upon ex vivo PMA/ionomycin stimulation in comparison to wild-type cells. Naïve (CD44l°CD62L+) HDAC1-null CD8+ T cells displayed a normal proliferative response, produced similar amounts of IL-2 and TNFα, slightly enhanced amounts of IFNγ, and their in vivo cytotoxicity was normal in the absence of HDAC1. However, T cell-specific loss of HDAC1 led to a reduced anti-viral CD8+ T cell response upon LCMV infection and impaired expansion of virus-specific CD8+ T cells. Taken together, our data indicate that HDAC1 is required for the efficient generation of thymocytes and peripheral T cells, for proper CD8+ T cell homeostasis and for an efficient in vivo expansion and activation of CD8+ T cells in response to LCMV infection.  相似文献   

18.
The integrin α4β7 plays an important role in lymphocyte homing to mucosal lymphoid tissues and has been shown to define a subpopulation of memory T cells capable of homing to intestinal sites. Here we have used a well-characterized intestinal virus, murine rotavirus, to investigate whether memory/effector function for an intestinal pathogen is associated with α4β7 expression. α4β7hi memory phenotype (CD44hi), α4β7 memory phenotype, and presumptively naive (CD44lo) CD8+ T lymphocytes from rotavirus-infected mice were sorted and transferred into Rag-2 (T- and B-cell-deficient) recipients that were chronically infected with murine rotavirus. α4β7hi memory phenotype CD8+ cells were highly efficient at clearing rotavirus infection, α4β7 memory cells were inefficient or ineffective, depending on the cell numbers transferred, and CD44lo cells were completely unable to clear chronic rotavirus infection. These data demonstrate that functional memory for rotavirus resides primarily in memory phenotype cells that display the mucosal homing receptor α4β7.  相似文献   

19.
Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr) on antigen presenting cells (APCs) has been shown to enhance invariant natural killer T (iNKT) cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP), plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ). We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO). LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC) elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.  相似文献   

20.
Variations in co-signal ligand expression and cytokine production greatly influence the antigen-presenting properties of migrating DCs in regional lymph nodes (RLNs). Here we investigated DCs migrating from the oral mucosa using CD326 and CD103 antigens for discriminate CD207+ Langerhans cells (LCs) from CD207+ submucosal DCs (SMDCs). Similar to DCs migrating from the skin, we identified four distinct oral mucosal DC (OMDC) subsets, CD11chiCD207CD103CD326intCD11bhi (F1; resident CD11bhi SMDCs), CD11cint/loCD207-CD103-CD326loCD11bint/hi (F2; newly recruited blood-derived SMDCs), CD11cint/loCD207+CD103+CD326int/hiCD11blo (CD103+ F3; resident CD207+ SMDCs), and CD11cint/loCD207+CD103-CD326int/hiCD11blo (CD103- F3; resident LCs). F1 DCs migrated rapidly after fluorescein isothiocyanate (FITC) painting and expressed notably high levels of CD86, CD273, and CD274 at an earlier time point. In contrast, CD103 LCs expressing the highest levels of the epithelial cell adhesion molecule CD326 accounted for a minor subset at the earlier time point, but increased slowly with CD103+CD207+ SMDCs. However, their expression of CD86, CD273, and CD274 was very limited. The delayed migration and limited induction of co-signal ligands suggest that roles of OMLCs are distinct from those of the other three DC subsets. The identification of distinct subsets of OMDCs in RLNs may benefit efforts to determine the functional specialization of each subset in T cell responses against orally administrated antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号