首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies suggest that high-salt diet is associated with cognitive decline in human and mouse. The fact that genetic factors account for less than 50% cases of sporadic Alzheimer’s disease (AD) highlights the important contribution of environmental factors, such as high-salt diet, in AD pathogenesis. However, whether and how high-salt diet fits the “amyloid cascade” hypothesis remains unexplored. Here, we show sodium chloride (NaCl) could increase Aβ levels in the medium of HEK293 cells overexpressing amyloid precursor protein (APP) or C99 fragment. NaCl treatment dose not affect APP level, gamma secretase level or activity. Instead, NaCl treatment suppresses the capacity of cells to clear Aβ and reduces Apolipoprotein E (ApoE) level. Finally, NaCl treated THP-1 or BV2 cells are inefficient in clearing Aβ when co-cultured with rat primary neurons. Our study suggests that high-salt diet may increase AD risk by directly modulating Aβ levels.  相似文献   

2.
Aggregation of the amyloid-β protein (Aβ) plays a pathogenic role in the progression of Alzheimer's disease, and small molecules that attenuate Aβ aggregation have been identified toward a therapeutic strategy that targets the disease's underlying cause. Compounds containing aromatic structures have been repeatedly reported as effective inhibitors of Aβ aggregation, but the functional groups that influence inhibition by these aromatic centers have been less frequently explored. The current study identifies analogs of naturally occurring coumarin as novel inhibitors of Aβ aggregation. Derivatization of the coumarin structure is shown to affect inhibitory capabilities and to influence the point at which an inhibitor intervenes within the nucleation dependent Aβ aggregation pathway. In particular, functional groups found within amyloid binding dyes, such as benzothiazole and triazole, can improve inhibition efficacy. Furthermore, inhibitor intervention at early or late stages within the amyloid aggregation pathway is shown to correlate with the ability of these functional groups to recognize and bind amyloid species that appear either early or late within the aggregation pathway. These results demonstrate that functionalization of small aromatic molecules with recognition elements can be used in the rational design of Aβ aggregation inhibitors to not only enhance inhibition but to also manipulate the inhibition mechanism.  相似文献   

3.
The mechanism by which regulatory T (Treg) cells suppress the immune response is not well defined. A recent study has shown that β-catenin prolongs Treg cell survival. Because β-catenin is regulated by glycogen synthase kinase 3β (GSK-3β)-directed phosphorylation, we focused on GSK-3β and the role it plays in Treg cell function. Inhibition of GSK-3β led to increased suppression activity by Treg cells. Inhibitor-treated Treg cells exhibited prolonged FoxP3 expression and increased levels of β-catenin and of the antiapoptotic protein Bcl-xL. Systemic administration of GSK-3β inhibitor resulted in prolonged islet survival in an allotransplant mouse model. Our data suggest that GSK-3β could be a useful target in developing strategies designed to increase the stability and function of Treg cells for inducing allotransplant tolerance or treating autoimmune conditions.  相似文献   

4.
Amyloid β-protein (Aβ) is central to the pathology of Alzheimer's disease. Of the two predominant Aβ alloforms, Aβ1-40 and Aβ1-42, the latter forms more toxic oligomers. C-terminal fragments (CTFs) of Aβ were recently shown to inhibit Aβ1-42 toxicity in vitro. Here, we studied Aβ1-42 assembly in the presence of three effective CTF inhibitors and an ineffective fragment, Aβ21-30. Using a discrete molecular dynamics approach that recently was shown to capture key differences between Aβ1-40 and Aβ1-42 oligomerization, we compared Aβ1-42 oligomer formation in the absence and presence of CTFs or Aβ21-30 and identified structural elements of Aβ1-42 that correlated with Aβ1-42 toxicity. CTFs co-assembled with Aβ1-42 into large heterooligomers containing multiple Aβ1-42 and inhibitor fragments. In contrast, Aβ21-30 co-assembled with Aβ1-42 into heterooligomers containing mostly a single Aβ1-42 and multiple Aβ21-30 fragments. The CTFs, but not Aβ21-30, decreased the β-strand propensity of Aβ1-42 in a concentration-dependent manner. CTFs and Aβ21-30 had a high binding propensity to the hydrophobic regions of Aβ1-42, but only CTFs were found to bind the Aβ1-42 region A2-F4. Consequently, only CTFs but not Aβ21-30 reduced the solvent accessibility of Aβ1-42 in region D1-R5. The reduced solvent accessibility of Aβ1-42 in the presence of CTFs was comparable to the solvent accessibility of Aβ1-40 oligomers formed in the absence of Aβ fragments. These findings suggest that region D1-R5, which was more exposed to the solvent in Aβ1-42 than in Aβ1-40 oligomers, is involved in mediating Aβ1-42 oligomer neurotoxicity.  相似文献   

5.
β-Amyloid peptide 1 1These authors contributed equally to this work. Communicated by Ramaswamy H. Sarma (Aβ) aggregates are toxic to neuron and the main cause of Alzheimer’s disease (AD). The role of congo red (CR) on Aβ aggregation is controversial in aqueous solution. Both prevention and promotion of Aβ aggregation have been proposed, suggesting that CR may interact with Aβ of different structural conformations resulting in different effects on Aβ aggregation behavior. CR with these characteristics can be applied to probe the molecular mechanism of Aβ aggregation. Therefore, in the present study, we used CR as a probe to study the Aβ aggregation behavior in sodium dodecyl sulfate (SDS) condition. Our results show that Aβ40 adopts two short helices at Q15-S26 and K28-L34 in the SDS environment. CR can interact with the helical form of Aβ40, and the main interaction site is located at the first helical and hydrophobic core region, residues 17–25, which is assigned as a discordant helix region. Furthermore, CR may prevent Aβ40 undergoing α-helix to β-strand conversion, and therefore aggregation through stabilizing the helical conformation of discordant helix in SDS environment, suggesting that the discordant helix plays a key role on the conformational stabilization of Aβ. Our present study implies that any factors or molecules that can stabilize the discordant helical conformation may also prevent the Aβ aggregation in membrane associated state. This leads to a new therapeutic strategy for the development of lead compounds to AD.  相似文献   

6.
β-Amyloid peptide (1) (Aβ) aggregates are toxic to neuron and the main cause of Alzheimer's disease (AD). The role of congo red (CR) on Aβ aggregation is controversial in aqueous solution. Both prevention and promotion of Aβ aggregation have been proposed, suggesting that CR may interact with Aβ of different structural conformations resulting in different effects on Aβ aggregation behavior. CR with these characteristics can be applied to probe the molecular mechanism of Aβ aggregation. Therefore, in the present study, we used CR as a probe to study the Aβ aggregation behavior in sodium dodecyl sulfate (SDS) condition. Our results show that Aβ(40) adopts two short helices at Q15-S26 and K28-L34 in the SDS environment. CR can interact with the helical form of Aβ(40), and the main interaction site is located at the first helical and hydrophobic core region, residues 17-25, which is assigned as a discordant helix region. Furthermore, CR may prevent Aβ(40) undergoing α-helix to β-strand conversion, and therefore aggregation through stabilizing the helical conformation of discordant helix in SDS environment, suggesting that the discordant helix plays a key role on the conformational stabilization of Aβ. Our present study implies that any factors or molecules that can stabilize the discordant helical conformation may also prevent the Aβ aggregation in membrane associated state. This leads to a new therapeutic strategy for the development of lead compounds to AD.  相似文献   

7.
Although Aβ peptides are causative agents in Alzheimer's disease (AD), the underlying mechanisms are still elusive. We report that Aβ42 induces a translational block by activating AMPK, thereby inhibiting the mTOR pathway. This translational block leads to widespread ER stress, which activates JNK3. JNK3 in turn phosphorylates APP at T668, thereby facilitating its endocytosis and subsequent processing. In support, pharmacologically blocking translation results in a significant increase in Aβ42 in a JNK3-dependent manner. Thus, JNK3 activation, which is?increased in human AD cases and a familial AD (FAD) mouse model, is integral to perpetuating Aβ42 production. Concomitantly, deletion of JNK3 from FAD mice results in a dramatic reduction in Aβ42 levels and overall plaque loads and increased neuronal number and improved cognition. This reveals AD as a metabolic disease that is under tight control by JNK3.  相似文献   

8.
9.
10.
Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction. Here, we have investigated the possibility that AβOs could impact cholinergic signaling. The activity of choline acetyltransferase (ChAT, the enzyme that carries out ACh production) was inhibited by ~50% in cultured cholinergic neurons exposed to low nanomolar concentrations of AβOs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase release, and [(3)H]choline uptake assays showed no evidence of neuronal damage or loss of viability that could account for reduced ChAT activity under these conditions. Glutamate receptor antagonists fully blocked ChAT inhibition and oxidative stress induced by AβOs. Antioxidant polyunsaturated fatty acids had similar effects, indicating that oxidative damage may be involved in ChAT inhibition. Treatment with insulin, previously shown to down-regulate neuronal AβO binding sites, fully prevented AβO-induced inhibition of ChAT. Interestingly, we found that AβOs selectively bind to ~50% of cultured cholinergic neurons, suggesting that ChAT is fully inhibited in AβO-targeted neurons. Reduction in ChAT activity instigated by AβOs may thus be a relevant event in early stage AD pathology, preceding the loss of cholinergic neurons commonly observed in AD brains.  相似文献   

11.
Zhao  Beiyu  Liu  Peng  Wei  Meng  Li  Yanbo  Liu  Jie  Ma  Louyan  Shang  Suhang  Jiang  Yu  Huo  Kang  Wang  Jin  Qu  Qiumin 《Neurochemical research》2019,44(4):859-873

Amyloid-β (Aβ) plays an important role in Alzheimer’s disease (AD) pathogenesis, and growing evidence has shown that poor sleep quality is one of the risk factors for AD, but the mechanisms of sleep deprivation leading to AD have still not been fully demonstrated. In the present study, we used wild-type (WT) rats to determine the effects of chronic sleep restriction (CSR) on Aβ accumulation. We found that CSR-21d rats had learning and memory functional decline in the Morris water maze (MWM) test. Meanwhile, Aβ42 deposition in the hippocampus and the prefrontal cortex was high after a 21-day sleep restriction. Moreover, compared with the control rats, CSR rats had increased expression of β-site APP-cleaving enzyme 1 (BACE1) and sAPPβ and decreased sAPPα levels in both the hippocampus and the prefrontal cortex, and the BACE1 level was positively correlated with the Aβ42 level. Additionally, in CSR-21d rats, low-density lipoprotein receptor-related protein 1 (LRP-1) levels were low, while receptor of advanced glycation end products (RAGE) levels were high in the hippocampus and the prefrontal cortex, and these transporters were significantly correlated with Aβ42 levels. In addition, CSR-21d rats had decreased plasma Aβ42 levels and soluble LRP1 (sLRP1) levels compared with the control rats. Altogether, this study demonstrated that 21 days of CSR could lead to brain Aβ accumulation in WT rats. The underlying mechanisms may be related to increased Aβ production via upregulation of the BACE1 pathway and disrupted Aβ clearance affecting brain and peripheral Aβ transport.

  相似文献   

12.
13.
We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXRα (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKKβ, a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXRα activating compounds lacked IKKβ inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKKα and IKKβ, which in most cases paralleled significant growth inhibitory and apoptosis inducing activities.  相似文献   

14.
Growing evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer’s disease (AD). However, it remains unclear why DM accelerates AD pathology. In cynomolgus monkeys older than 25 years, senile plaques (SPs) are spontaneously and consistently observed in their brains, and neurofibrillary tangles are present at 32 years of age and older. In laboratory-housed monkeys, obesity is occasionally observed and frequently leads to development of type 2 DM. In the present study, we performed histopathological and biochemical analyses of brain tissue in cynomolgus monkeys with type 2 DM to clarify the relationship between DM and AD pathology. Here, we provide the evidence that DM accelerates Aβ pathology in vivo in nonhuman primates who had not undergone any genetic manipulation. In DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices, even in monkeys younger than 20 years. Biochemical analyses of brain revealed that the amount of GM1-ganglioside-bound Aβ (GAβ)—the endogenous seed for Aβ fibril formation in the brain—was clearly elevated in DM-affected monkeys. Furthermore, the level of Rab GTPases was also significantly increased in the brains of adult monkeys with DM, almost to the same levels as in aged monkeys. Intraneuronal accumulation of enlarged endosomes was also observed in DM-affected monkeys, suggesting that exacerbated endocytic disturbance may underlie the acceleration of Aβ pathology due to DM.  相似文献   

15.
Aβ peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer''s disease (AD), with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3) is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Aβ42 specifically in adult neurons, to avoid developmental effects. Aβ42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Aβ42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment) rescued Aβ42 toxicity. Aβ42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Aβ42. The GSK-3–mediated effects on Aβ42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Aβ42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Aβ42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Aβ42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.  相似文献   

16.
17.
Inhibition of gluconeogenesis by α-oxo acids   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

18.
Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3β (GSK-3β) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3β inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3β inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3β, β-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-β-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and β-PIX. In the reverse approach, treatment with β-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3β during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of β-catenin, phospho-c-Raf, phospho-ERK, and β-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3β inhibitors may increase their therapeutic potential.  相似文献   

19.

Background

The Wld S mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying Wld S -mediated axonal protection are unclear, although many studies have attributed Wld S neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury.

Results

Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that Wld S but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive Wld S still protects. In addition, NAD+ by itself is axonally protective and together with Wld S is additive in the MPP+ model.

Conclusions

Our data suggest that NAD+ and Wld S act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that Wld S might be involved in preserving mitochondrial health or maintaining cellular metabolism.  相似文献   

20.
Our earlier studies have shown that gossypol is a specific inhibitor of DNA synthesis in cultured cells at low doses. In an attempt to determine the mechanism for the inhibition of DNA synthesis by gossypol we observed that gossypol does not interact with DNA per se but may affect some of the enzymes involved in DNA replication. These studies indicated that gossypol inhibits both in vivo and in vitro the activity of DNA polymerase α (EC 2.7.7.7), a major enzyme involved in DNA replication, in a time- and dose-dependent manner. Kinetic analysis revealed that gossypol acts as a noncompetitive inhibitor of DNA polymerase α with respect to all four deoxynucleotide triphosphates and to the activated DNA template. Inhibition of DNA polymerase α does not appear to be due to either metal chelation or reduction of sulfhydryl groups on the enzyme. Gossypol also inhibited HeLa DNA polymerase β in a dose-dependent manner, but had no effect on DNA polymerase γ. These results suggest that inhibition of DNA polymerase α may account in part for the inhibition of DNA synthesis and the S-phase block caused by gossypol. The data also raise the possibility that gossypol may interfere with DNA repair processes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号