首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.  相似文献   

2.
Cysts of Giardia sp. were detected in feces from the rectum of 20 of 74 pinnipeds examined from the eastern coast of Canada in 1997 and 1998 using a monoclonal antibody technique. Infected pinnipeds included 15 adult harp seals (Phoca groenlandica), four adult grey seals (Halichoerus grypus), and one juvenile harbor seal (Phoca vitulina). Cysts were not detected in 15 seal pups <1-yr-old. The highest prevalence (50%) occurred in adult harp seals collected near the Magdalen Islands in the Gulf of St. Lawrence. The overall prevalence of Giardia sp. in grey and harbor seals, excluding pups, from the Gulf and St. Lawrence estuary was 23%. Feces from 11 beluga (Delphinapterus leucas) and one northern bottle-nosed whale (Hyperoodon ampullatus) stranded in the St. Lawrence estuary were negative for Giardia sp. cysts. The significance of Giardia sp. in marine mammals, shown here for the first time in eastern coastal Canada, is unknown.  相似文献   

3.
Rapid climate changes are occurring in the Arctic, with substantial repercussions for arctic ecosystems. It is challenging to assess ecosystem changes in remote polar environments, but one successful approach has entailed monitoring the diets of upper trophic level consumers. Quantitative fatty acid signature analysis (QFASA) and fatty acid carbon isotope (δ13C‐FA) patterns were used to assess diets of East Greenland (EG) polar bears (Ursus maritimus) (n = 310) over the past three decades. QFASA‐generated diet estimates indicated that, on average, EG bears mainly consumed arctic ringed seals (47.5 ± 2.1%), migratory subarctic harp (30.6 ± 1.5%) and hooded (16.7 ± 1.3%) seals and rarely, if ever, consumed bearded seals, narwhals or walruses. Ringed seal consumption declined by 14%/decade over 28 years (90.1 ± 2.5% in 1984 to 33.9 ± 11.1% in 2011). Hooded seal consumption increased by 9.5%/decade (0.0 ± 0.0% in 1984 to 25.9 ± 9.1% in 2011). This increase may include harp seal, since hooded and harp seal FA signatures were not as well differentiated relative to other prey species. Declining δ13C‐FA ratios supported shifts from more nearshore/benthic/ice‐associated prey to more offshore/pelagic/open‐water‐associated prey, consistent with diet estimates. Increased hooded seal and decreased ringed seal consumption occurred during years when the North Atlantic Oscillation (NAO) was lower. Thus, periods with warmer temperatures and less sea ice were associated with more subarctic and less arctic seal species consumption. These changes in the relative abundance, accessibility, or distribution of arctic and subarctic marine mammals may have health consequences for EG polar bears. For example, the diet change resulted in consistently slower temporal declines in adipose levels of legacy persistent organic pollutants, as the subarctic seals have higher contaminant burdens than arctic seals. Overall, considerable changes are occurring in the EG marine ecosystem, with consequences for contaminant dynamics.  相似文献   

4.
The soundscape is a crucial habitat feature for marine mammals. This study investigates the contribution of bearded seal vocalizations to the soundscape in the western Canadian Arctic, and also the vocal characteristics of bearded seals relative to sea ice conditions. Passive acoustic data were recorded near Sachs Harbour between August 2015 and July 2016. Sound pressure levels (SPL) in the 50–1,000 Hz and 1–10 kHz bands increased as the total duration of all bearded seal vocalizations increased, and this relationship was moderated by sea ice concentration. Bearded seals in this region had an overlapping vocal repertoire with bearded seals in other areas of the Arctic, and had seven additional vocalizations that have not been previously documented for this region. This study is the first detailed assessment of the influence of bearded seal calls on SPL, which shows the high potential of bearded seals to influence underwater sound levels during the mating season. Bearded seals live in a changing Arctic seascape, and their influence on the soundscape may shift as sea ice continues to diminish. It is imperative that acoustic monitoring continues within the Arctic, and this study provides a baseline for future monitoring as the Arctic continues to change.  相似文献   

5.
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies.  相似文献   

6.
Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2 adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2 adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.  相似文献   

7.
Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.  相似文献   

8.
Declines in Arctic sea ice cover are influencing the distribution of protected endemic marine mammals, many of which are important for local Indigenous Peoples, and increasing the presence of potentially disruptive industrial activities. Due to increasing conservation concerns, we conducted the first year-round acoustic monitoring of waters off Gambell and Savoonga (St. Lawrence Island, Alaska), and in the Bering Strait to quantify vocalizing presence of bowhead whales, belugas, walruses, bearded seals, and ribbon seals. Bottom-mounted archival acoustic recorders collected data for up to 10 months per deployment between 2012 and 2016. Spectrograms were analyzed for species-typical vocalizations, and daily detection rates and presence/absence were calculated. Generalized additive models were used to model call presence as a function of time-of-year, sea surface temperature, and sea ice concentration. We identified seasonality in call presence for all species, corroborating previous acoustic and distribution studies, and identified finer-scale spatiotemporal distribution via occurrence of call presence between different monitoring sites. Time-of-year was the strongest significant effect on call presence for all species. These data provide important information on Arctic endemic species' spatiotemporal distributions in biologically and culturally important areas within a rapidly changing Arctic region.  相似文献   

9.
A multi-year unusual mortality event (UME) involving primarily common bottlenose dolphins (Tursiops truncates) was declared in the northern Gulf of Mexico (GoM) with an initial start date of February 2010 and remains ongoing as of August 2014. To examine potential changing characteristics of the UME over time, we compared the number and demographics of dolphin strandings from January 2010 through June 2013 across the entire GoM as well as against baseline (1990-2009) GoM stranding patterns. Years 2010 and 2011 had the highest annual number of stranded dolphins since Louisiana’s record began, and 2011 was one of the years with the highest strandings for both Mississippi and Alabama. Statewide, annual numbers of stranded dolphins were not elevated for GoM coasts of Florida or Texas during the UME period. Demographic, spatial, and temporal clusters identified within this UME included increased strandings in northern coastal Louisiana and Mississippi (March-May 2010); Barataria Bay, Louisiana (August 2010-December 2011); Mississippi and Alabama (2011, including a high prevalence and number of stranded perinates); and multiple GoM states during early 2013. While the causes of the GoM UME have not been determined, the location and magnitude of dolphin strandings during and the year following the 2010 Deepwater Horizon oil spill, including the Barataria Bay cluster from August 2010 to December 2011, overlap in time and space with locations that received heavy and prolonged oiling. There are, however, multiple known causes of previous GoM dolphin UMEs, including brevetoxicosis and dolphin morbillivirus. Additionally, increased dolphin strandings occurred in northern Louisiana and Mississippi before the Deepwater Horizon oil spill. Identification of spatial, temporal, and demographic clusters within the UME suggest that this mortality event may involve different contributing factors varying by location, time, and bottlenose dolphin populations that will be better discerned by incorporating diagnostic information, including histopathology.  相似文献   

10.
Marine mammal strandings in the New Caledonia region, Southwest Pacific   总被引:1,自引:0,他引:1  
  相似文献   

11.
Presented here is the first comprehensive and updated compilation of history, distribution, and findings of Stejneger's beaked whales (Mesoplodon stejnegeri) in Alaska. Stejneger's beaked whales are a poorly understood, elusive, deep-diving cetacean species found in the North Pacific Ocean. Since Stejneger's beaked whale strandings data in Alaska through 1994 were last published, 35 additional strandings have been documented. Twenty-seven animals stranded in the Aleutian Islands, seven stranded in Southcentral Alaska, and one animal stranded on St. Lawrence Island. Twenty-two carcasses were necropsied, but only four were fresh. Seventeen of the 22 died during mass stranding events and cause of death could not be definitively determined. Barotrauma was suspected in three cases and infectious disease possibly complicated by barotrauma occurred in two cases. We documented an expansion of strandings into the northern Bering Sea, characterized a sex bias, examined stomach contents that included macroplastic, and identified parasites not previously associated with Stejneger's beaked whales. Also included are data on the largest known mass stranding of Stejneger's beaked whales, which occurred on Adak Island in 2018. The history, distribution, and findings presented here are central to further our understanding of this species.  相似文献   

12.
Multi-decadal time-series of biological indices that reflect the state of a population are rare in ecological studies, but invaluable for assessing environmental regulation of population dynamics. We utilized canine teeth extracted from ringed seals (Pusa hispida) killed by polar bears (Ursus maritimus) in the Beaufort Sea, Canada, in 1985–2011, to obtain widths of annual growth layers in the cementum. Canine teeth for 75 individuals were measured and compared across years using a proportional width index (PWI) spanning 1965–2007. PWI was positively correlated with ringed seal ovulation rate obtained independently from other studies and was significantly lower than normal during ringed seal reproductive declines in 1974–75, 1984–87, 1991–93, and 2004–05, suggesting that PWI reflects ringed seal reproductive capacity. The PWI was also examined against climatic and sea ice factors to assess environmental regulation of ringed seal reproduction. Results suggest that ringed seals benefit from cyclonic circulation regimes in the Beaufort Sea, and an earlier breakup of sea ice in summer that may positively influence the quality and quantity of food during the open water season. Results highlight how cementum annuli in the canine teeth of ringed seals can provide an index of body state and linkages to sea ice conditions. Canine teeth from ringed seals can function as a means to monitor the effects of past Arctic marine variability on area-specific populations for which there are few independent empirical data.  相似文献   

13.
Among the most numerous seabird and pinniped species of the Fram Strait and the Greenland Sea, little auks Alle alle and harp seals Pagophila (Phoca) groenlandica are very abundant in the mixed Polar/Arctic Waters at the front between the two water masses. This must reflect the presence of very high concentrations of their food, Arctic zooplankton and nekton, massively attracting their predators. Such a high biological production seems to be depending on new primary production based on upwelling and high nutrient concentration. This usually takes place at the ice edge (e.g. July 2005), but hydrological conditions such as eddies can modify its position, east of the front in open water as caused by a subsurface eddy (August 2005), or in ice-covered areas if westerly winds push the pack ice to the east, eventually covering an eddy and causing very high concentrations of little auks and harp seals (July 2008). On the other hand, a dramatic decrease of pack ice coverage can move this water mass farther north and west, making it inaccessible to little auks during their breeding season, and apparently causing breeding failure in Jan Mayen in July 2005. In future years, if a much stronger diminution in sea ice coverage will take place, similar to the retreat in 2005 and 2007, the failure might affect the whole Spitsbergen population, as well as other seabird species feeding mainly at the ice edge.  相似文献   

14.
The harp seal Pagophilus groenlandicus is a major high trophic level predator in the Barents Sea, and to better understand their function in the Barents Sea ecosystem, we need to understand their foraging behaviour during their most intensive feeding period. We analysed the diet composition and prey preference of 184 harp seals and 94 faeces samples, sampled in the northern Barents Sea (around Svalbard) during the period May–August in 1996, 1997, and 2004–2006. Concurrent with the sampling of seals, prey availability was assessed in one area in 1996 and 1997 and in two areas in 2006 using standard acoustic methods. Our study showed that harp seal diet composition varied significantly both in time (year) and space, and that their diets appeared to be size dependent. Both subadult (<150 cm) and adult seals were associated with pelagic crustaceans (particularly krill), whereas primarily adult seals were associated with fish (capelin, gadoids and flatfish). Krill was the most important prey group (63 %) followed by polar cod (16 %) and other fish species (10 %). The prey preference of harp seals varied in time and space; polar cod was often preferred by the seals whereas krill was commonly consumed in lower proportion than observed in the survey area. Gadoids and capelin had either been exploited in the same or less proportion as observed in the survey sea. This study emphasises the ecological significance of krill as prime food for harp seals during their intensive feeding period in summer.  相似文献   

15.
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqia?vik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqia?vik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.  相似文献   

16.
Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20–30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.  相似文献   

17.
Pinniped phylogeny and a new hypothesis for their origin and dispersal   总被引:3,自引:0,他引:3  
The relationships and the zoogeography of the three extant pinniped families, Otariidae (sea lions and fur seals), Odobenidae (one extant species, the walrus), and Phocidae (true seals), have been contentious. Here, we address these topics in a molecular study that includes all extant species of true seals and sea lions, four fur seals and the walrus. Contrary to prevailing morphological views the analyses conclusively showed monophyletic Pinnipedia with a basal split between Otarioidea (Otariidae+Odobenidae) and Phocidae. The northern fur seal was the sister to all remaining otariids and neither sea lions nor arctocephaline fur seals were recognized as monophyletic entities. The basal Phocidae split between Monachinae (monk seals and southern true seals) and Phocinae (northern true seals) was strongly supported. The phylogeny of the Phocinae suggests that the ancestors of Cystophora (hooded seal) and the Phocini (e.g. harp seal, ringed seal) adapted to Arctic conditions and ice-breeding before 12 MYA (million years ago) as supported by the white natal coat of these lineages. The origin of the endemic Caspian and Baikal seals was dated well before the onset of major Pleistocene glaciations. The current findings, together with recent advances in pinniped paleontology, allow the proposal of a new hypothesis for pinniped origin and early dispersal. The hypothesis posits that pinnipeds originated on the North American continent with early otarioid and otariid divergences taking place in the northeast Pacific and those of the phocids in coastal areas of southeast N America for later dispersal to colder environments in the N Atlantic and the Arctic Basin, and in Antarctic waters.  相似文献   

18.
Recent unidirectional climatic trends and changes in top predator population ecology suggest that long-term modifications may be happening in Hudson Bay, Canada. Effects of such changes on ice-obligated seal populations are expected but long-term studies are required to differentiate climate-induced changes from natural variation. We conducted strip-transect surveys in late spring in 1995–1997, 1999–2000 and 2007–2008 to estimate distribution, density and abundance of ice-obligated ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in western Hudson Bay. When hauled out, ringed seals preferred land-fast and consolidated pack ice, whereas bearded seals preferred unconsolidated pack ice. Bearded and ringed seal density estimates varied from 0.0036 to 0.0229 seals/km2 of ice and from 0.46 to 1.60 seals/km2 of ice, respectively. Strong inter-annual variations were recorded in the abundance estimates of both species, with the largest abundance estimates in 1995 (104,162 and 1,494 ringed and bearded seals, respectively) and the lowest in 2008 for ringed seals (33,701) and 1997 for bearded seals (278). A sine function best described seal density estimates in western Hudson Bay and suggested a decadal cycle. Previous studies that reported low ringed seal demographic parameters in the 1990s and a recovery in the 2000s supported our interpretation of the survey results. We discuss our results in the context of climate warming and suggest that a long-term decline in ice-obligated seal density estimates may overlay a possible natural decadal cycle.  相似文献   

19.
The pelagic and gregarious, low Arctic harp seal ( Phoca groenlandica ) is the most common seal species in most refuse faunas from coastal hunter-gatherer sites dating from the late Atlantic to the early Subboreal period ( ca. 4000-2000 cal B. C.) in the Baltic Sea. Our main objective was to examine the migration contra breeding population hypotheses regarding the Baltic harp seals. Analyses of epiphyseal fusion data and osteometry of archeological harp seal remains from 25 dwelling-sites suggest that a local breeding population established itself in the early Subboreal period. In the Middle Neolithic the rookery possibly was situated in the Baltic proper, south of Aland and west of Gotland. The mean adult size of the Baltic harp seals decreased, suggesting minimal genetic exchange with the north Atlantic Ocean population. Genetic drift, interspecific competition, and over-hunting by humans are all factors likely to have contributed to the eventual extinction of harp seals in the Baltic Sea.  相似文献   

20.
This study was undertaken to measure whether young harp seals (Phoca groenlandica) and hooded seals (Cystophora cristata) drink seawater and, if so, to investigate how the excess salt load is handled. Blood and urine samples were collected from hooded seal pups (n=3) and harp seal pups (n=3) after 2 weeks of freshwater exposure, at intervals during 3 weeks of seawater exposure and, finally, after 2 weeks of re-exposure to fresh water. Total water turnover, as measured by injection of tritiated water, was 2200 ml · day−1 and 3300 ml · day−1 in hooded seals and harp seals, respectively. The extent of mariposia was taken as the difference between total water turnover and influx of water through food (free and metabolic water) and respiratory water exchange. Seawater drinking amounted to 14% and 27% of total water turnover (rH2O) for the hooded seals and harp seals, respectively. Further evidence of mariposia was obtained from an increase in the excretion rate of the urine osmolytes Na+, Cl and Mg2+, during the period of seawater exposure. It is concluded that water influx due to seawater drinking can not be excluded as a source of error when estimating food consumption of free-ranging harp seals and hooded seals, by use of labeled water techniques. Accepted: 11 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号