首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cell》1986,47(3):401-412
The 23.5 kd protein product of the ras-related YPT1 gene of S. cerevisiae was found to be essential for cell growth. The loss of YPT1 function, studied in cells with the YPT1 gene on chromosome VI regulated by the galactose-inducible GAL10 promoter, led to arrested cells that were multibudded and exhibited a complete disorganization of microtubules and an apparent loss of nuclear integrity. The YPT protein binds GTP specifically. GTP binding of the protein is essential for its intracellular function. The Asn121→lle substitution, generated by site-directed mutagenesis, had a dominant lethal phenotype, the expression of the mutant protein led to binucleated cells and abnormal spindles. In contrast to the S. cerevisiae RAS1 and RAS2 gene products, the YPT protein seems to be involved, directly or indirectly, in microtubule organization and function.  相似文献   

2.
By co-injecting fluorescent tubulin and vinculin into fish fibroblasts we have revealed a “cross talk” between microtubules and early sites of substrate contact. This mutuality was first indicated by the targeting of vinculin-rich foci by microtubules during their growth towards the cell periphery. In addition to passing directly over contact sites, the ends of single microtubules could be observed to target several contacts in succession or the same contact repetitively, with intermittent withdrawals. Targeting sometimes involved side-stepping, or the major re-routing of a microtubule, indicative of a guided, rather than a random process. The paths that microtubules followed into contacts were unrelated to the orientation of stress fiber assemblies and targeting occurred also in mouse fibroblasts that lacked a system of intermediate filaments. Further experiments with microtubule inhibitors showed that adhesion foci can: (a) capture microtubules and stabilize them against disassembly by nocodazole; and (b), act as preferred sites of microtubule polymerization, during either early recovery from nocodazole, or brief treatment with taxol. From these and other findings we speculate that microtubules are guided into substrate contact sites and through the motor-dependent delivery of signaling molecules serve to modulate their development. It is further proposed this modulation provides the route whereby microtubules exert their influence on cell shape and polarity.  相似文献   

3.
Mouse dendritic cells (DCs) can rapidly extend their Class II MHC-positive late endosomal compartments into tubular structures, induced by Toll-like receptor (TLR) triggering. Within antigen-presenting DCs, tubular endosomes polarize toward antigen-specific CD4+ T cells, which are considered beneficial for their activation. Here we describe that also in human DCs, TLR triggering induces tubular late endosomes, labeled by fluorescent LDL. TLR triggering was insufficient for induced tubulation of transferrin-positive endosomal recycling compartments (ERCs) in human monocyte-derived DCs. We studied endosomal remodeling in human DCs in co-cultures of DCs with CD8+ T cells. Tubulation of ERCs within human DCs requires antigen-specific CD8+ T cell interaction. Tubular remodeling of endosomes occurs within 30 min of T cell contact and involves ligation of HLA-A2 and ICAM-1 by T cell-expressed T cell receptor and LFA-1, respectively. Disintegration of microtubules or inhibition of endosomal recycling abolished tubular ERCs, which coincided with reduced antigen-dependent CD8+ T cell activation. Based on these data, we propose that remodeling of transferrin-positive ERCs in human DCs involves both innate and T cell-derived signals.  相似文献   

4.
Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90–177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90–177) to microtubules with a 1:1 MAP6(90–177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90–177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca2+-calmodulin competes with microtubules for MAP6(90–177) binding and that the binding mode of MAP6(90–177) to microtubules and Ca2+-calmodulin involves a common stretch of amino acid residues on the MAP6(90–177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca2+-calmodulin.  相似文献   

5.
Inflammatory cytokines produced at the early stages of malaria infection contribute to shaping protective immunity and pathophysiology. To gain mechanistic insight into these processes, it is important to understand the cellular origin of cytokines because both cytokine input and cytokine-producing cells play key roles. Here, we determined cytokine responses by monocytes, macrophages, and dendritic cells (DCs) to purified Plasmodium falciparum and Plasmodium berghei ANKA, and by spleen macrophages and DCs from Plasmodium yoelii 17NXL-infected and P. berghei ANKA-infected mice. The results demonstrate that monocytes and macrophages do not produce inflammatory cytokines to malaria parasites and that DCs are the primary source early in infection, and DC subsets differentially produce cytokines. Importantly, blocking of phagosomal acidification by inhibiting vacuolar-type H+-ATPase enabled macrophages to elicit cytokine responses. Because cytokine responses to malaria parasites are mediated primarily through endosomal Toll-like receptors, our data indicate that the inability of macrophages to produce cytokines is due to the phagosomal acidification that disrupts endosomal ligand-receptor engagement. Macrophages efficiently produced cytokines to LPS upon simultaneously internalizing parasites and to heat-killed Escherichia coli, demonstrating that phagosomal acidification affects endosomal receptor-mediated, but not cell surface receptor-mediated, recognition of Toll-like receptor agonists. Enabling monocytes/macrophages to elicit immune responses to parasites by blocking endosomal acidification can be a novel strategy for the effective development of protective immunity to malaria. The results have important implications for enhancing the efficacy of a whole parasite-based malaria vaccine and for designing strategies for the development of protective immunity to pathogens that induce immune responses primarily through endosomal receptors.  相似文献   

6.
7.
Microtubules are essential regulators of cell polarity, architecture and motility. The organization of the microtubule network is context-specific. In non-polarized cells, microtubules are anchored to the centrosome and form radial arrays. In most epithelial cells, microtubules are noncentrosomal, align along the apico-basal axis and the centrosome templates a cilium. It follows that cells undergoing mesenchyme-to-epithelium transitions must reorganize their microtubule network extensively, yet little is understood about how this process is orchestrated. In particular, the pathways regulating the apical positioning of the centrosome are unknown, a central question given the role of cilia in fluid propulsion, sensation and signaling. In zebrafish, neural progenitors undergo progressive epithelialization during neurulation, and thus provide a convenient in vivo cellular context in which to address this question. We demonstrate here that the microtubule cytoskeleton gradually transitions from a radial to linear organization during neurulation and that microtubules function in conjunction with the polarity protein Pard3 to mediate centrosome positioning. Pard3 depletion results in hydrocephalus, a defect often associated with abnormal cerebrospinal fluid flow that has been linked to cilia defects. These findings thus bring to focus cellular events occurring during neurulation and reveal novel molecular mechanisms implicated in centrosome positioning.  相似文献   

8.
Planar cell polarity (PCP) signaling controls the global orientation of surface structures, such as hairs and bristles, in both vertebrates and invertebrates. In Frizzled6 -/- (Fz6 -/-) mice, hair follicle orientations on the head and back are nearly random at birth, but reorient during early postnatal development to eventually generate a nearly parallel anterior-to-posterior array. We report the identification of a naturally occurring exon 5 deletion in Astrotactin2 (Astn2) that acts as a recessive genetic modifier of the Fz6 -/- hair patterning phenotype. A genetically engineered Astn2 exon 5 deletion recapitulates the modifier phenotype. In Fz6 -/- ;Astn2 ex5del/del mice, hair orientation on the back is subtly biased from posterior-to-anterior, leading to a 180-degree orientation reversal in mature mice. These experiments suggest that Astn2, an endosomal membrane protein, modulates PCP signaling.  相似文献   

9.
Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Firstly, we applied quantitative proteomics to determine global cell cycle changes in the profiles of MAPs in human and Drosophila cells. This uncovered a wide range of cell cycle regulations of MAPs previously unidentified. Secondly, systematic studies of human kinesins highlighted an overlooked aspect of kinesins: most mitotic kinesins suppress their affinity to microtubules or reduce their protein levels in interphase in combination with nuclear localization. Thirdly, in-depth analysis of a novel Drosophila MAP (Mink) revealed that the suppression of the microtubule affinity of this mitotic MAP in combination with nuclear localization is essential for microtubule organization in interphase, and phosphorylation of Mink is needed for kinetochore-microtubule attachment in mitosis. Thus, this first comprehensive analysis of MAP regulation for the interphase/mitosis transition advances our understanding of kinesin biology and reveals the prevalence and importance of multi-layered MAP regulation.Microtubules are universally found in eukaryotic cells and are involved in diverse processes including cell division, polarity, and intracellular transport. A striking feature of microtubules is that they change their dynamics and organization depending on cellular contexts. Proteins that interact with microtubules, collectively called microtubule-associated proteins (MAPs),1 are considered to play a major role in determining microtubule dynamics and organization.Although MAPs in general lack recognizable sequence motifs, many MAPs from various sources have been successfully identified by means of biochemical purification followed by mass spectrometry (14). However, functional analysis is more problematic, as hundreds of MAPs can interact with microtubules. In addition, multiple MAPs have functional redundancy (57), making their biological function often difficult to determine, which results in their importance being grossly underappreciated. Furthermore, it is challenging to understand how MAPs collectively determine the diverse organization and dynamics of microtubules in different cells.One of the most dramatic changes of microtubule organization is found at the transition from interphase to mitosis. During mitosis, microtubules are much more dynamic and are organized into a dense bipolar structure, the spindle, whereas microtubules in interphase are less dynamic and are arranged in a radial array. This transition is rapid and is thought to reflect mainly a change in the activities of both motor and nonmotor MAPs (8); however, we do not have sufficient knowledge of how MAPs themselves are regulated. It is crucial to identify and understand the regulation of MAPs whose activities change in the cell cycle, and how they collectively change microtubule dynamics and organization. Misregulation of such MAPs could interfere with chromosome segregation or cell polarity and potentially contribute to oncogenesis (9). Also, this misregulation can be used to elucidate important functions that are masked due to functional redundancy.We hypothesize that some proteins bind to microtubules only during mitosis and are released from microtubules in interphase. The binding of such proteins to spindle microtubules in mitosis could collectively trigger the formation of the functional spindle, and, of equal importance, removing such proteins from microtubules at the mitotic exit could be essential for disassembling the spindle and proper organization and/or function of interphase microtubules. Conversely, some proteins may bind to microtubules specifically during interphase. No studies have been reported that systematically identify proteins whose microtubule-binding activities change between interphase and mitosis.Here we report a combined approach integrating three levels of analyses to gain insights into how MAPs are regulated as a whole to drive microtubule reorganization at the transition between interphase and mitosis. Firstly, we applied proteomics to determine the quantitative change of the global MAP profile between mitosis and interphase in both human and Drosophila cells. Secondly, we systematically analyzed the human kinesin superfamily for cell cycle localization in relation to microtubule association to gain insight into the general principle of MAP regulation in the cell cycle. Thirdly, we focused on one novel Drosophila MAP to understand the molecular mechanism and biological significance of MAP regulation. This integrated approach has provided the framework of MAP regulation critical for the interphase/mitosis transition.  相似文献   

10.
Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.  相似文献   

11.
P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2−/− mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ.  相似文献   

12.
Radiation-induced heart damage caused by low-dose X-rays has a significant impact on tumour patients' prognosis, with cardiac hypertrophy being the most severe noncarcinogenic adverse effect. Our previous study demonstrated that mitophagy activation promoted cardiac hypertrophy, but the underlying mechanisms remained unclear. In the present study, PARL-IN-1 enhanced excessive hypertrophy of cardiomyocytes and exacerbated mitochondrial damage. Isobaric tags for relative and absolute quantification-based quantitative proteomics identified NDP52 as a crucial target mediating cardiac hypertrophy induced by low-dose X-rays. SUMOylation proteomics revealed that the SUMO E3 ligase MUL1 facilitated NDP52 SUMOylation through SUMO2. Co-IP coupled with LC–MS/MS identified a critical lysine residue at position 262 of NDP52 as the key site for SUMO2-mediated SUMOylation of NDP52. The point mutation plasmid NDP52K262R inhibited mitophagy under MUL1 overexpression, as evidenced by inhibition of LC3 interaction with NDP52, PINK1 and LAMP2A. A mitochondrial dissociation study revealed that NDP52K262R inhibited PINK1 targeting to endosomes early endosomal marker (EEA1), late/lysosome endosomal marker (LAMP2A) and recycling endosomal marker (RAB11), and laser confocal microscopy confirmed that NDP52K262R impaired the recruitment of mitochondria to the autophagic pathway through EEA1/RAB11 and ATG3, ATG5, ATG16L1 and STX17, but did not affect mitochondrial delivery to lysosomes via LAMP2A for degradation. In conclusion, our findings suggest that MUL1-mediated SUMOylation of NDP52 plays a crucial role in regulating mitophagy in the context of low-dose X-ray-induced cardiac hypertrophy. Two hundred sixty-second lysine of NDP52 is identified as a key SUMOylation site for low-dose X-ray promoting mitophagy activation and cardiac hypertrophy. Collectively, this study provides novel implications for the development of therapeutic strategies aimed at preventing the progression of cardiac hypertrophy induced by low-dose X-rays.  相似文献   

13.
Ras-related, guanine nucleotide-binding proteins of the Ypt/Rab family play a key role at defined steps in vesicular transport, both in yeast and in mammalian cells. In yeast, Ypt1p has an essential function late in endoplasmic reticulum (ER) to Golgi transport, and the redundant Ypt31/Ypt32 GTPases have been proposed to act in transport through and/or from the Golgi. Here we report that mutant alleles of YPT31 and YPT32, whose gene products have a reduced affinity for GTP, are able to suppress the dominant lethal phenotype of YPT1 N121I . Co-expression of YPT1 N121I and the suppressor YPT31 N126I allow essentially undisturbed secretory transport in the absence of the respective wild-type GTPases. Such mutant cells massively overaccumulate 60–100 nm vesicles and are heat sensitive. It appears likely that the mutant GTPases, which are defective in nucleotide binding, compete for the binding of common interacting protein(s). These and other genetic interactions between YPT1, YPT31/32, ARF1 and SEC4 described here strongly support the view that Ypt31p and Ypt32p have a central, Golgi-associated function in anterograde or retrograde transport. Received: 28 August 1998 / Accepted: 14 October 1998  相似文献   

14.
Drosophila melanogaster macrophages are highly migratory cells that lend themselves beautifully to high resolution in vivo imaging experiments. By expressing fluorescent probes to reveal actin and microtubules, we can observe the dynamic interplay of these two cytoskeletal networks as macrophages migrate and interact with one another within a living organism. We show that before an episode of persistent motility, whether responding to developmental guidance or wound cues, macrophages assemble a polarized array of microtubules that bundle into a compass-like arm that appears to anticipate the direction of migration. Whenever cells collide with one another, their microtubule arms transiently align just before cell–cell repulsion, and we show that forcing depolymerization of microtubules by expression of Spastin leads to their defective polarity and failure to contact inhibit from one another. The same is true in orbit/clasp mutants, indicating a pivotal role for this microtubule-binding protein in the assembly and/or functioning of the microtubule arm during polarized migration and contact repulsion.  相似文献   

15.
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patterns. Despite this tendency for colinearity, microtubules have been seen to branch off extant microtubules at ∼45°. To examine this paradoxical behavior, we investigated whether some microtubules may be born on and grow along extant microtubule(s). The plus-end markers Arabidopsis thaliana end binding protein 1a, AtEB1a-GFP, and Arabidopsis SPIRAL1, SPR1-GFP, allowed microtubules of known polarity to be distinguished from underlying microtubules. This showed that the majority of microtubules do branch but in a direction heavily biased toward the plus end of the mother microtubule: few grow backward, consistent with the common polarity of domains. However, we also found that a significant proportion of emergent comets do follow the axes of extant microtubules, both at sites of apparent microtubule nucleation and at cross-over points. These phenomena help explain the persistence of bundles and counterbalance the tendency to branch.  相似文献   

16.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

17.
Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3 + was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3 + gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3 + suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1 + gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.  相似文献   

18.
Dynamic microtubules (MTs) are essential for various intracellular events, such as mitosis. In Drosophila melanogaster S2 cells, three MT tip-localizing proteins, Msps/XMAP215, EB1, and Sentin (an EB1 cargo protein), have been identified as being critical for accelerating MT growth and promoting catastrophe events, thus resulting in the formation of dynamic MTs. However, the molecular activity of each protein and the basis of the modulation of MT dynamics by these three factors are unknown. In this paper, we showed in vitro that XMAP215msps had a potent growth-promoting activity at a wide range of tubulin concentrations, whereas Sentin, when recruited by EB1 to the growing MT tip, accelerated growth and also increased catastrophe frequency. When all three factors were combined, the growth rate was synergistically enhanced, and rescue events were observed most frequently, but frequent catastrophes restrained the lengthening of the MTs. We propose that MT dynamics are promoted by the independent as well as the cooperative action of XMAP215msps polymerase and the EB1–Sentin duo.  相似文献   

19.
Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell. It is unknown whether spindle alignment requires both apical and basal cues, nor have molecular motors been identified that regulate spindle movement. Using live imaging of neuroblasts within intact larval brains, we detect independent movement of both apical and basal spindle poles, suggesting that forces act on both poles. We show that reducing astral microtubules decreases the frequency of spindle movement, but not its maximum velocity, suggesting that one or few microtubules can move the spindle. Mutants in the Lis1/dynactin complex strongly decrease maximum and average spindle velocity, consistent with this motor complex mediating spindle/cortex forces. Loss of either astral microtubules or Lis1/dynactin leads to spindle/cortical polarity alignment defects at metaphase, but these are rescued by telophase. We propose that an early Lis1/dynactin-dependent pathway and a late Lis1/dynactin-independent pathway regulate neuroblast spindle orientation.  相似文献   

20.
Several regulators of endocytic trafficking have recently been identified as tumour suppressors in Drosophila. These include components of the endosomal sorting complex required for transport (ESCRT) machinery. Disruption of subunits of ESCRT-I and –II leads to cell-autonomous endosomal accumulation of ubiquitinated receptors, loss of apicobasal polarity and epithelial integrity, and increased cell death. Here we report that disruption of the ATPase dVps4, the most downstream component of the ESCRT machinery, causes the same array of cellular phenotypes. We find that loss of epithelial integrity and increased apoptosis, but not loss of cell polarity, require the activation of JNK signalling. Abrogation of JNK signalling prevents apoptosis in dVps4 deficient cells. Indeed double deficiency in dVps4 and JNK signalling leads to the formation of neoplastic tumours. We conclude that dvps4 is a tumour suppressor in Drosophila and that JNK is central to the cell-autonomous phenotypes of ESCRT-deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号