共查询到20条相似文献,搜索用时 30 毫秒
1.
Phospholipase D (PLD) is emerging as a major player in many novel signaling pathways. Based on recent studies correlating membrane composition with enzyme function, we speculated that feeding of dietary lipids to the newborns has a major impact on brain PLD activity. To test this hypothesis, the rat dams were fed fat-free powder containing either safflower oil or fish oil, and a control powdered chow. The pups were weaned onto the diet and sacrificed at 30 days of age. PLD activity was measured by transphosphatidylation assays using rat brain membranes. This study shows that microsome GTPS-dependent PLD activity in rats fed safflower oil or fish oil was significantly reduced by 38% and 30% respectively compared to controls. Oleate-dependent PLD activity in the safflower oil group, however, was significantly increased by 38%. In contrast, synaptosome membrane (P2) GTPS-dependent PLD activity in rats consuming safflower oil was significantly increased by 29%, but there was no difference in oleate-dependent PLD activity. Likewise, no difference was observed in microsome oleate-dependent PLD and P2 GTPS-dependent PLD activity between the fish oil and the control groups. These results indicate that dietary lipid intake appears to modulate phospholipid metabolism and differential expression of PLD isozymes in the brain. 相似文献
2.
Phospholipase D (PLD) is an enzyme which participates in the signalling mechanism cleaving phosphatidylcholine (PC) to choline and phosphatidic acid (PA). In Tetrahymena pyriformis GL this enzyme activity is enhanced by different kinds of agonists (sodium orthovanadate, sodium fluoride and phorbol 12-myristate 13-acetate), and its activity can be inhibited by inhibitors such as pertussis toxin, calphostin C, genistein, trifluoperazine. These results suggest that the PLD signalling pathway is connected with the tyrosine kinase, phospholipase C, phosphatidylinositol and G-protein coupled signalling pathways. By demonstrating the PLD activity in Tetrahymena our knowledge on the signalling mechanisms at a unicellular level has been extended. The results support our view that most transducing mechanisms that are characteristic of mammalian cells are also in the protozoan Tetrahymena. © 1997 John Wiley & Sons, Ltd. 相似文献
3.
Cardiolipin-Specific Phospholipase D Activity in Haemophilus parainfluenzae 总被引:4,自引:8,他引:4 下载免费PDF全文
A highly active phospholipase D that is specific for cardiolipin was detected in the gram-negative bacterium Haemophilus parainfluenzae. Previously reported phospholipase D preparations have come exclusively from higher plants. The bacterial enzyme hydrolyzed cardiolipin to phosphatidyl glycerol and phosphatidic acid. During the incubation, phosphatidic acid disappeared. Phosphatidyl ethanolamine, methylated phosphatidyl ethanolamines, phosphatidyl choline, and phosphatidyl glycerol were not hydrolyzed when cardiolipin was rapidly hydrolyzed. 相似文献
4.
采用在碱性条件下正丁醇抽提的人胎盘膜上的碱性磷酸酶(ALP)作底物, 检测血清中糖基磷脂酰肌醇- 特异性的磷脂酶D (GPI-PLD) 的活性水平. 这种ALP 含疏水的GPI锚定膜结构(anchor), 与血清保温后能被其中的GPI-PLD降解成亲水的不含GPI-锚定的ALP. 采用Triton X-114 二相分离法和梯度凝胶电泳法来分离含GPI的ALP和不含GPI的ALP, 计算出转化率(% ), 用来表示GPI-PLD酶活性. 对这两种方法进行比较后, 表明在一般实验室条件下, 二相分离法更为简便, 并对其影响因素进行了全面探讨. 相似文献
5.
Phospholipase D Activity of Rat Brain Neuronal Nuclei 总被引:2,自引:0,他引:2
Julian N. Kanfer Douglas McCartney Indrapal N. Singh Louis Freysz 《Journal of neurochemistry》1996,67(2):760-766
Abstract: Phospholipase D activity of rat brain neuronal nuclei, measured with exogenous phosphatidylcholine as substrate, was characterized. The measured activity of neuronal nuclei was at least 36-fold greater than the activity in glia nuclei. The pH optimum was 6.5, and unsaturated but not saturated fatty acids stimulated the enzyme. The optimal concentration of sodium oleate for stimulation of the enzyme activity was 1.2 m M in the presence of 0.75 m M phosphatidylcholine. This phospholipase D activity was cation independent. In the absence of NaF, used as a phosphatidic acid phosphatase inhibitor, the principal product was diglyceride; whereas in the presence of NaF, the principal product was phosphatidic acid. The phospholipase D, in addition to having hydrolytic activity, was able to catalyze a transphosphatidylation reaction. Maximum phosphatidylethanol formation was seen with 0.2–0.3 M ethanol. GTPγS, ATPγS, BeF2 , AIF3 , phosphatidic acid, and phosphatidylethanol inhibited the neuronal nuclei phospholipase D activity. The addition of the cytosolic fraction of brain, liver, kidney, spleen, and heart to the incubation mixtures resulted in inhibition of the phospholipase D activity. Phospholipase D activity was detectable in nuclei prepared from rat kidney, spleen, heart, and liver. 相似文献
6.
Kabachevskaya E. M. Lyakhnovich G. V. Volotovsky I. D. 《Russian Journal of Plant Physiology》2002,49(4):518-523
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed. 相似文献
7.
Jyotiprakas Chattopadhyay V. Natarajan Harald H. O. Schmid 《Journal of neurochemistry》1991,57(4):1429-1436
Rat sciatic nerve contains a membrane-bound phospholipase D that catalyzes the hydrolysis of exogenous phosphatidylcholine (PC) to phosphatidic acid (PA) and choline. The enzyme is associated with a particulate fraction consisting primarily of microsomes and myelin. This fraction also contains phosphatidate phosphohydrolase activity leading to the production of diacylglycerols (DAG). The phosphohydrolase activity can be completely inhibited by NaF. Hydrolysis of exogenous PC requires detergent and is linear up to about 40 micrograms of protein at a pH optimum of 6.5. In the absence of NaF, the sum of PA and DAG increases linearly for 40 min, whereas in its presence, PA production is linear for only 15 min. At optimum conditions, PC hydrolysis proceeds at 15 nmol/h/mg of protein. Addition of increasing amounts of ethanol to the incubation system leads to the generation of increasing amounts of phosphatidylethanol, indicating transphosphatidylation activity. At an ethanol concentration of 0.4 M, phosphatidylethanol represents about one-half of the reaction products generated at approximately the same rate of enzymic activity observed in the absence of ethanol. Higher ethanol concentrations are inhibitory. 相似文献
8.
本文以啤酒麦芽根为试验材料,建立了适合麦芽根中磷脂酶D制备及活性测定的技术体系.磷脂酶D标准品在0.3~3.0 mU酶量范围与荧光物质的生成量呈线性关系,相关系数r=0.9901;孵育时间在0~45 min内,荧光物质的生成量与孵育时间呈线性相关.检测麦芽根处理后湿粗酶样的酶活为3.45 U/mg.该方法经实际应用,具有良好的准确性和重现性,且操作简单,易推广. 相似文献
9.
Relocalization of Phospholipase D Activity Mediates Membrane Formation During Meiosis 总被引:16,自引:0,他引:16 下载免费PDF全文
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK→ H) and one with an amino-terminal deletion (Spo14pΔN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK→ H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pΔN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pΔN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function. 相似文献
10.
11.
Yozo Nakazawa Rei Suzuki Masataka Uchino Yoshimasa Sagane Takuji Kudo Takeshi Nagai Hiroaki Sato Katsumi Takano 《Current microbiology》2010,60(5):365-372
Previously we isolated six actinomycetes strains, 9-4, 10-1, 10-2, 10-3, 10-6, and 21-4, that produce phospholipase D (PLD)
with high transphosphatidylation activity. In this study, we identified these strains, and the PLD activities were compared
with those of reference strains. 16S rDNA sequences and DNA–DNA hybridization tests indicated taxonomic affiliations of strain
9-6 with Streptomyces senoensis, strains 10-1 and 10-6 with S. vinaceus, and strains 10-2 and 10-3 with S. racemochromogenes. Strain 21-4, though identified as a Streptomyces sp., could not be identified with any known species. Meanwhile, most of the culture supernatants of reference strains demonstrated
no or very weak PLD activity, while those of our strains exhibited significantly higher activity. All of the strains in this
study were identified as Streptomyces species. The PLD activity of our strains exceeded most of the reference Streptomyces strains. The findings in this study imply that the Streptomyces strains, although they are members of the same species, can produce different quantities of PLD enzyme. 相似文献
12.
A. V. Zhukov 《Russian Journal of Plant Physiology》2018,65(6):784-800
Literary data on very long-chain fatty acids (VLCFAs) that are present in polar lipids of the plant cell membranes are discussed. Large amounts of VLCFA are found in polar lipids of some cellular organelles as well as in nonextractable lipids from diverse plant objects, where the influence of surface lipids on the relative content of these FAs is excluded. In some plants, the VLCFA fraction in membrane lipids increases under several kinds of stress. Amounts and diversity of VLCFAs are lower in flowering plants as compared with the representatives of more ancient taxons—gymnosperms, ferns, and marine algae. Presence of VLCFAs in the composition of annular lipids of the cell membranes is assumed. Biosynthesis of VLCFAs, enzymes involved in the process, and encoding genes are discussed. 相似文献
13.
Rosanna Cardillo Paola D'Arrigo Lorenzo De Ferra Valentine Piergianni Domenico Scarcelli Stefano Servi 《Biotechnology Techniques》1993,7(11):795-798
Summary We describe the preparation of phosphatidyl p-nitrophenol (PpNP) and its use as a substrate in an assay for the quantitative evaluation of Phospholipase D. The solution of the substrate in Tris HCl buffer, pH 8, and Triton X is mixed directly with an aliquot of fermentation broth and the absorbance of the solution read at 405 nm. The method is rapid, sensitive and inexpensive. 相似文献
14.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) was found to stimulate phospholipase D activity in cultured primary astrocytes. Both the hydrolysis and the transphosphatidylation reaction catalyzed by phospholipase D were studied in cells labeled with [3H]glycerol. Phosphatidic acid (PA) synthesis was increased after addition of 100 nM TPA. When ethanol was present in the cell culture medium, phosphatidylethanol (Peth), a product of phospholipase D-catalyzed transphosphatidylation, was formed. The half-maximum effective concentrations (EC50) of TPA were 25 nM for PA increase as well as for Peth formation. The formation of Peth in ethanol-treated cells was accompanied by an inhibition of the TPA-induced increase in labeled PA. Increasing ethanol concentrations led to an increase in [3H]Peth and a decrease in [3H]PA. A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), inhibited both the synthesis of PA and the formation of Peth observed after TPA addition to the astrocytes. Dioctanoyl-glycerol (100 microM) stimulated the formation of Peth in the presence of ethanol. In addition to the induction of Peth formation in astrocytes, TPA induced Peth formation in ethanol-treated neurons. The present results indicate that phospholipase D activity is stimulated by TPA in cultured primary brain cells. Modulation of phospholipase D activity by protein kinase C is a mechanism that may be important in signal transduction cascades. 相似文献
15.
John Purkiss Richard A. Murrin P. Jane Owen Michael R. Boarder 《Journal of neurochemistry》1991,57(3):1084-1087
The role of lipid-bound second messengers in the regulation of neurotransmitter secretion is an important but poorly understood subject. Both bovine adrenal chromaffin cells and rat phoeochromocytoma (PC12) cells, two widely studied models of neuronal function, respond to bradykinin by generating phosphatidic acid (PA). This putative second messenger may be produced by two receptor-linked pathways: sequential action of phospholipase C (PLC) and diacylglycerol kinase (DAG kinase), or directly by phospholipase D (PLD). Here we show that bradykinin stimulation of chromaffin cells prelabelled (24 h) with 32Pi leads to production of [32P]PA which is not affected by 50 mM butanol. However, bradykinin stimulation of PC12 cells leads to [32P]PA formation, all of which is converted to phosphatidylbutanol in the presence of butanol. When chromaffin cells prelabelled with [3H]choline were stimulated with bradykinin there was no enhancement of formation of water soluble products of phosphatidylcholine hydrolysis. When chromaffin cells were permeabilised with pneumolysin and incubated in the presence of [gamma-32P]ATP, the formation of [32P]PA was still stimulated by bradykinin. These results show that, although both neuronal models synthesize PA in response to bradykinin, they do so by quite different routes: PLC/DAG kinase for chromaffin cells and PLD for PC12 cells. The observation that neither bradykinin nor tetradecanoyl phorbol acetate stimulate PLD in chromaffin cells suggests that these cells lack PLD activity. The conservation of PA formation, albeit by different routes, may indicate an essential role of PA in the regulation of cellular events by bradykinin. 相似文献
16.
Mary LaLonde Hilde Janssens Suyong Yun Juan Crosby Olga Redina Virginie Olive Yelena M Altshuller Seok-Yong Choi Guangwei Du Peter J Gergen Michael A Frohman 《BMC developmental biology》2006,6(1):1-13
Background
Cellularization of the Drosophila embryo is an unusually synchronous form of cytokinesis in which polarized membrane extension proceeds in part through incorporation of new membrane via fusion of apically-translocated Golgi-derived vesicles.Results
We describe here involvement of the signaling enzyme Phospholipase D (Pld) in regulation of this developmental step. Functional analysis using gene targeting revealed that cellularization is hindered by the loss of Pld, resulting frequently in early embryonic developmental arrest. Mechanistically, chronic Pld deficiency causes abnormal Golgi structure and secretory vesicle trafficking.Conclusion
Our results suggest that Pld functions to promote trafficking of Golgi-derived fusion-competent vesicles during cellularization. 相似文献17.
18.
19.
蛋白激酶和D—鞘氨醇对人肝癌细胞磷脂酶D活力的调节 总被引:3,自引:0,他引:3
为了研究蛋白激酶C(PKC)和酪氨酸激酶(TPK)对7721人肝癌细胞中磷脂酰胆碱(PC0专一性磷脂酶D(PLD)的调节,测定了各种PKC和TPK抑制剂和PKC抗体对该细胞中PLD活力的影响。结果发现:4种PKC抑制剂Chelerythrine,H-7,CalphostinC和星形孢菌素(Staurosporine),以及2种TPK抑制剂Tyrphostin46和木质异黄酮(Genistein)f 相似文献
20.
Kabachevskaya E. M. Lyakhnovich G. V. Volotovskii I. D. 《Russian Journal of Plant Physiology》2004,51(6):769-773
The effect of synthetic analogs of phytohormones and red light absorbed by phytochrome on the phospholipase D activity (PLD) was studied in oat (Avena sativa L.) seedlings. ABA manifested a short-term stimulating effect on PLD activity in the green seedlings and inhibited phospholipase activity in the etiolated plants. Kinetin inhibited enzyme activity in the etiolated seedlings and did not affect its activity in light. GA did not markedly affect PLD activity in the etiolated plants and activated this enzyme in the green seedlings. Finally, IAA did not affect the enzyme activity. The relationship of the regulatory effects of phytohormones and light on PLD activity is discussed. 相似文献