首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian locomotor output cycles kaput (Clock) gene is a core gene in the circadian rhythm system that is involved in cancer cell proliferation. However, the molecular mechanism of Clock gene participate in the cancer cell proliferation is unclear. Previous studies demonstrated that cell proliferation could be regulated by the canonical Wnt pathway (also known as the Wnt/β-catenin pathway), and the Wnt/β-catenin pathway had a relation with the circadian system. To investigate whether the Clock gene affects the proliferation of breast cancer cell by regulating the expression of β-catenin, we knocked down the Clock expression of mouse breast cancer cells (4T1) by RNA interference. Then detected their proliferation rates using CCK8 assay and the expression of the β-catenin gene by real-time PCR and Western blot. The results showed that the proliferation of the Clock knocked down 4T1 cells is slower than the control. The expression level of β-catenin of these 4T1 cells is reduced. Our study showed that Clock gene knocked down inhibiting the proliferation of the 4T1 cells, probably by suppressing the expression of β-catenin.  相似文献   

2.
SIRT4, a member of the sirtuin family, has been implicated in the regulation of insulin secretion by modulation of glutamate dehydrogenase. However, the role of this enzyme in the regulation of metabolism in other tissues is unknown. In this study we investigated whether depletion of SIRT4 would enhance liver and muscle metabolic functions. To do this SIRT4 was knocked down using an adenoviral shRNA in mouse primary hepatocytes and myotubes. We observed a significant increase in gene expression of mitochondrial and fatty acid metabolism enzymes in hepatocytes with reduced SIRT4 levels. SIRT4 knockdown also increased SIRT1 mRNA and protein levels both in vitro and in vivo. In agreement with the increased fatty acid oxidation (FAO) gene expression, we showed a significant increase in FAO in SIRT4 knockdown primary hepatocytes compared with control, and this effect was dependent on SIRT1. In primary myotubes, knockdown of SIRT4 resulted in increased FAO, cellular respiration, and pAMPK levels. When SIRT4 was knocked down in vivo by tail vein injection of a shRNA adenovirus, we observed a significant increase in hepatic mitochondrial and FAO gene expression consistent with the findings in primary hepatocytes. Taken together these findings demonstrate that SIRT4 inhibition increases fat oxidative capacity in liver and mitochondrial function in muscle, which might provide therapeutic benefits for diseases associated with ectopic lipid storage such as type 2 diabetes.  相似文献   

3.
Adrenaline and noradrenaline are important neurotransmitter hormones that mediate physiological stress responses in adult mammals, and are essential for cardiovascular function during a critical period of embryonic/fetal development. In this study, we describe a novel mouse model system for identifying and characterizing adrenergic cells. Specifically, we generated a reporter mouse strain in which a nuclear-localized enhanced green fluorescent protein gene (nEGFP) was inserted into exon 1 of the gene encoding Phenylethanolamine n-methyltransferase (Pnmt), the enzyme responsible for production of adrenaline from noradrenaline. Our analysis demonstrates that this knock-in mutation effectively marks adrenergic cells in embryonic and adult mice. We see expression of nEGFP in Pnmt-expressing cells of the adrenal medulla in adult animals. We also note that nEGFP expression recapitulates the restricted expression of Pnmt in the embryonic heart. Finally, we show that nEGFP and Pnmt expressions are each induced in parallel during the in vitro differentiation of pluripotent mouse embryonic stem cells into beating cardiomyocytes. Thus, this new mouse genetic model should be useful for the identification and functional characterization of adrenergic cells in vitro and in vivo.  相似文献   

4.
Neurotrophins and their receptors control a number of cellular processes, such as survival, gene expression and axonal growth, by activating multiple signalling pathways in peripheral neurons. Whether each of these pathways controls a distinct developmental process remains unknown. Here we describe a novel knock-in mouse model expressing a chimeric TrkA/TrkC (TrkAC) receptor from TrkA locus. In these mice, prospective nociceptors survived, segregated into appropriate peptidergic and nonpeptidergic subsets, projected normally to distinct laminae of the dorsal spinal cord, but displayed aberrant peripheral target innervation. This study provides the first in vivo evidence that intracellular parts of different Trk receptors are interchangeable to promote survival and maturation of nociceptors and shows that these developmental processes can be uncoupled from peripheral target innervation. Moreover, adult homozygous TrkAC knock-in mice displayed severe deficits in acute and tissue injury-induced pain, representing the first viable adult Trk mouse mutant with a pain phenotype.  相似文献   

5.
Two prostaglandin (PG) H synthases encoded by Ptgs genes, colloquially known as cyclooxygenase (COX)-1 and COX-2, catalyze the formation of PG endoperoxide H2, the precursor of the major prostanoids. To address the functional interchangeability of these two isoforms and their distinct roles, we have generated COX-2>COX-1 mice whereby Ptgs2 is knocked in to the Ptgs1 locus. We then “flipped” Ptgs genes to successfully create the Reversa mouse strain, where knock-in COX-2 is expressed constitutively and knock-in COX-1 is lipopolysaccharide (LPS) inducible. In macrophages, flipping the two Ptgs genes has no obvious impact on COX protein subcellular localization. COX-1 was shown to compensate for PG synthesis at high concentrations of substrate, whereas elevated LPS-induced PG production was only observed for cells expressing endogenous COX-2. Differential tissue-specific patterns of expression of the knock-in proteins were evident. Thus, platelets from COX-2>COX-1 and Reversa mice failed to express knock-in COX-2 and, therefore, thromboxane (Tx) production in vitro and urinary Tx metabolite formation in COX-2>COX-1 and Reversa mice in vivo were substantially decreased relative to WT and COX-1>COX-2 mice. Manipulation of COXs revealed isoform-specific compensatory functions and variable degrees of interchangeability for PG biosynthesis in cells/tissues.  相似文献   

6.
Mounting evidence has indicated that long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) regulates cell apoptosis, and is involved in a variety of diseases. However, its exact role in myocardial infarction (MI) has not been fully elucidated. In the present study, we firstly observed that the expression levels of the lncRNA MEG3 in infarct hearts and hypoxic neonatal mice ventricular myocytes (NMVMs) were up‐regulated by quantitative real‐time PCR (qRT‐PCR). Then, we knocked down lncRNA MEG3 by lentiviral delivery in the myocardial border region following multipoint injection. Following 28 days of MI, the lncRNA MEG3 knockdown mice indicated better cardiac function, and less cardiac remodelling by ultrasonic cardiogram and histological analysis. In addition, we indicated that lncRNA MEG3 knockdown reduced myocyte apoptosis and reactive oxygen species production in MI mice model and hypoxic NMVMs. Furthermore, we revealed that knockdown of lncRNA MEG3 protected against endoplasmic reticulum stress (ERS)‐mediated myocardial apoptosis including the induction of PERK‐eIF2α and caspase 12 pathways. At last, we provided evidence that p53 was identified as a protein target of lncRNA MEG3 to regulate NF‐κB‐ and ERS‐associated apoptosis. Taken collectively, our findings demonstrated that lncRNA MEG3 knockdown exerted cardioprotection by reducing ERS‐mediated apoptosis through targeting p53 post‐MI.  相似文献   

7.
Intercross of mice transgenic for Flp-recombinase with the CD19cre mouse strain leads to excision of the Frt-flanked neo R cassette from the CD19cre knock-in transgene. This significantly reduces the expression level of Cre by the CD19cre transgene and consequently decreases the extent of Cre-mediated recombination of loxP-flanked alleles, most likely due to the fact that this neo R cassette contains polyoma enhancer sequences. We wish to draw attention to this finding, since the Flp-deleter mouse strain is commonly used to remove Frt-flanked selection cassettes in vivo from conditional alleles. Therefore conditional alleles have to be separated from the Flp-deleter transgene by breeding before crosses with CD19cre mice are initiated. In addition our findings suggest that gene expression from the CD19 locus can be increased by the insertion of exogenous enhancer sequences, without compromising B cell specificity.  相似文献   

8.
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.  相似文献   

9.
The study aimed to investigate the role of lncRNA FENDRR in proliferation and angiogenesis of human retinal endothelial cells (HRECs). HRECs were cultured in high-glucose medium to mimic diabetic retinopathy (DR) model. We overexpressed or knocked down FENDRR in HRECs to evaluate the effect of FENDRR expression on cell proliferation, migration, and capillary morphogenesis of HRECs under either normal glucose or high glucose condition. Results showed that VEGF and FENDRR expression were increased in blood from DR patients compared with the control subjects. Furthermore, high glucose treatment upregulated expression of VEGF and FENDRR secreted from HRECs, in a dose- and time-dependent manner. Importantly, FENDRR overexpression significantly promoted the high-glucose-induced proliferation, migration, capillary morphogenesis, and VEGF expression in HRECs. In contrast, FENDRR knockdown exerted the opposite effects. In conclusion, lncRNA FENDRR promotes the high-glucose-induced proliferation and angiogenesis of HRECs and may serve as a potential target for anti-angiogenic therapy for DR.  相似文献   

10.
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a “reverse” tetracycline‐controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline‐responsive promoter (TetO). Here, Tnnt2‐rtTA activated TetO‐Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte‐specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2‐rtTA;TetO‐Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods. genesis 48:63–72, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Several lines of evidence support the notion that increased RNA-binding ability of polypyrimidine tract-binding (PTB) protein-associated splicing factor (PSF) and aberrant expression of long non-coding RNAs (lncRNAs) are associated with mouse and human tumors. To identify the PSF-binding lncRNA involved in human oncogenesis, we screened a nuclear RNA repertoire of human melanoma cell line, YUSAC, through RNA-SELEX affinity chromatography. A previously unreported lncRNA, termed as Llme23, was found to bind immobilized PSF resin. The specific binding of Llme23 to both recombinant and native PSF protein was confirmed in vitro and in vivo. The expression of PSF-binding Llme23 is exclusively detected in human melanoma lines. Knocking down Llme23 remarkably suppressed the malignant property of YUSAC cells, accompanied by the repressed expression of proto-oncogene Rab23. These results may indicate that Llme23 can function as an oncogenic RNA and directly associate the PSF-binding lncRNA with human melanoma.  相似文献   

12.
The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.  相似文献   

13.
14.
15.
Emerging studies have shown that long noncoding RNA (lncRNA) TUG1 (taurine‐up‐regulated gene 1) plays critical roles in multiple biological processes. However, the expression and function of lncRNA TUG1 in cerebral ischaemia/reperfusion injury have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up‐regulated in cultured MA‐C cells exposed to OGD/R injury, while similar results were also observed in MCAO model. Mechanistically, knockdown of TUG1 decreased lactate dehydrogenase levels and the ratio of apoptotic cells and promoted cell survival in vitro. Moreover, knockdown of TUG1 decreased AQP4 (encoding aquaporin 4) expression to attenuate OGD/R injury. TUG1 could interact directly with miR‐145, and down‐regulation of miR‐145 could efficiently reverse the function of TUG1 siRNA on AQP4 expression. Finally, the TUG1 shRNA reduced the infarction area and cell apoptosis in I/R mouse brains in vivo. In summary, our results suggested that lncRNA TUG1 may function as a competing endogenous RNA (ceRNA) for miR‐145 to induce cell damage, possibly providing a new therapeutic target in cerebral ischaemia/reperfusion injury.  相似文献   

16.
17.
18.
Long noncoding RNAs (lncRNAs) are single‐stranded RNA molecules longer than 200 nt that regulate many cellular processes. MicroRNA 155 host gene (MIR155HG) encodes the microRNA (miR)‐155 that regulates various signalling pathways of innate and adaptive immune responses against viral infections. MIR155HG also encodes a lncRNA that we call lncRNA‐155. Here, we observed that expression of lncRNA‐155 was markedly upregulated during influenza A virus (IAV) infection both in vitro (several cell lines) and in vivo (mouse model). Interestingly, robust expression of lncRNA‐155 was also induced by infections with several other viruses. Disruption of lncRNA‐155 expression in A549 cells diminished the antiviral innate immunity against IAV. Furthermore, knockout of lncRNA‐155 in mice significantly increased IAV replication and virulence in the animals. In contrast, overexpression of lncRNA‐155 in human cells suppressed IAV replication, suggesting that lncRNA‐155 is involved in host antiviral innate immunity induced by IAV infection. Moreover, we found that lncRNA‐155 had a profound effect on expression of protein tyrosine phosphatase 1B (PTP1B) during the infection with IAV. Inhibition of PTP1B by lncRNA‐155 resulted in higher production of interferon‐beta (IFN‐β) and several critical interferon‐stimulated genes (ISGs). Together, these observations reveal that MIR155HG derived lncRNA‐155 can be induced by IAV, which modulates host innate immunity during the virus infection via regulation of PTP1B‐mediated interferon response.  相似文献   

19.
Previously, a significantly upregulated lncRNA, LINC01512, in lung adenocarcinoma (LAD) was obtained, while its biological function and molecular mechanisms were unclear. The expression level of LINC01512 was estimated by qPCR from 100 pairs of LAD and NT samples. The correlation of LINC01512 to clinical data of LAD patients was analyzed. LINC01512 was knocked down and overexpressed in SPCA‐1 and A549 cell lines by lentivirus‐mediated technology, and the oncological behavioral changes of SPCA‐1 and A549 cells were observed, as well as, tumorigenicity in experimental nude mice. Compared to the adjacent tissues, LINC01512 was obviously upregulated in LAD. The expression level of LINC01512 was closely related to lymph node metastasis and tumor node metastasis (TNM) stage. Survival analysis showed that the survival time of high expression LINC01512 group was significantly shorter than the low‐expression group in LAD. Knockdown or overexpression test unanimously confirmed that LINC01512 can increase the ability of cell migration, invasion, proliferation, colony formation, adhesion, and S phase and G2/M phase cells, whereas decrease the apoptosis and G0/G1 phase cells. Nude mice experiments confirmed that LINC01512 significantly enhanced the speed and weight of tumorigenicity. LINC01512 is an oncogenic lncRNA gene that promotes the progression and distinctly enhances the oncogenic ability in lung adenocarcinoma. J. Cell. Biochem. 118: 3102–3110, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号