首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although variations in allele frequencies at common SNPs have been extensively studied in different populations, little is known about the stratification of rare variants and its impact on association tests. In this paper, we used Affymetrix 500K genotype data from the WTCCC to investigate if variants in three different frequency categories (below 1%, between 1 and 5%, above 5%) show different stratification patterns in the UK population. We found that these patterns are indeed different. The top principal component extracted from the rare variant category shows poor correlations with any principal component or combination of principal components from the low frequency or common variant categories. These results could suggest that a suitable solution to avoid false positive association due to population stratification would involve adjusting for the respective PCs when testing for variants in different allele frequency categories. However, we found this was not the case both on type 2 diabetes data and on simulated data. Indeed, adjusting rare variant association tests on PCs derived from rare variants does no better to correct for population stratification than adjusting on PCs derived from more common variants. Mixed models perform slightly better for low frequency variants than PC based adjustments but less well for the rarest variants. These results call for the need of new methodological developments specifically devoted to address rare variant stratification issues in association tests.  相似文献   

2.
Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations if population subgroups are unequally represented among cases and controls. This problem is particularly acute for studies involving pooled genotyping of very large numbers of single-nucleotide-polymorphism (SNP) markers, because most methods for analysis of association in structured populations require individual genotyping data. In this study, we present several strategies for matching case and control pools to have similar genetic compositions, based on ancestry information inferred from genotype data for approximately 300 SNPs tiled on an oligonucleotide-based genotyping array. We also discuss methods for measuring the impact of population stratification on an association study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these simple matching strategies can effectively mitigate the impact of population stratification.  相似文献   

3.
CYP3A4-V, an A to G promoter variant associated with prostate cancer in African Americans, exhibits large differences in allele frequency between populations. Given that the African American population is genetically heterogeneous because of its African ancestry and subsequent admixture with European Americans, case-control studies with African Americans are highly susceptible to spurious associations. To test for association with prostate cancer, we genotyped CYP3A4-V in 1376 (2 N) chromosomes from prostate cancer patients and age- and ethnicity-matched controls representing African Americans, Nigerians, and European Americans. To detect population stratification among the African American samples, 10 unlinked genetic markers were genotyped. To correct for the stratification, the uncorrected association statistic was divided by the average of association statistics across the 10 unlinked markers. Sharp differences in CYP3A4-V frequencies were observed between Nigerian and European American controls (0.87 and 0.10, respectively; P<0.0001). African Americans were intermediate (0.66). An association uncorrected for stratification was observed between CYP3A4-V and prostate cancer in African Americans (P=0.007). A nominal association was also observed among European Americans (P=0.02) but not Nigerians. In addition, the unlinked genetic marker test provided strong evidence of population stratification among African Americans. Because of the high level of stratification, the corrected P-value was not significant (P=0.25). Follow-up studies on a larger dataset will be needed to confirm whether the association is indeed spurious; however, these results reveal the potential for confounding of association studies by using African Americans and the need for study designs that take into account substructure caused by differences in ancestral proportions between cases and controls.  相似文献   

4.
Zhang F  Wang Y  Deng HW 《PloS one》2008,3(10):e3392
Population stratification can cause spurious associations in population-based association studies. Several statistical methods have been proposed to reduce the impact of population stratification on population-based association studies. We simulated a set of stratified populations based on the real haplotype data from the HapMap ENCODE project, and compared the relative power, type I error rates, accuracy and positive prediction value of four prevailing population-based association study methods: traditional case-control tests, structured association (SA), genomic control (GC) and principal components analysis (PCA) under various population stratification levels. Additionally, we evaluated the effects of sample sizes and frequencies of disease susceptible allele on the performance of the four analytical methods in the presence of population stratification. We found that the performance of PCA was very stable under various scenarios. Our comparison results suggest that SA and PCA have comparable performance, if sufficient ancestral informative markers are used in SA analysis. GC appeared to be strongly conservative in significantly stratified populations. It may be better to apply GC in the stratified populations with low stratification level. Our study intends to provide a practical guideline for researchers to select proper study methods and make appropriate inference of the results in population-based association studies.  相似文献   

5.
Although high-density SNP genotyping platforms generate a momentum for detailed genome-wide association (GWA) studies, an offshoot is a new insight into population genetics. Here, we present an example in one of the best-known founder populations by scrutinizing ten distinct Finnish early- and late-settlement subpopulations. By determining genetic distances, homozygosity, and patterns of linkage disequilibrium, we demonstrate that population substructure, and even individual ancestry, is detectable at a very high resolution and supports the concept of multiple historical bottlenecks resulting from consecutive founder effects. Given that genetic studies are currently aiming at identifying smaller and smaller genetic effects, recognizing and controlling for population substructure even at this fine level becomes imperative to avoid confounding and spurious associations. This study provides an example of the power of GWA data sets to demonstrate stratification caused by population history even within a seemingly homogeneous population, like the Finns. Further, the results provide interesting lessons concerning the impact of population history on the genome landscape of humans, as well as approaches to identify rare variants enriched in these subpopulations.  相似文献   

6.
Although genetic association studies using unrelated individuals may be subject to bias caused by population stratification, alternative methods that are robust to population stratification, such as family-based association designs, may be less powerful. Furthermore, it is often more feasible and less expensive to collect unrelated individuals. Recently, several statistical methods have been proposed for case-control association tests in a structured population; these methods may be robust to population stratification. In the present study, we propose a quantitative similarity-based association test (QSAT) to identify association between a candidate marker and a quantitative trait of interest, through use of unrelated individuals. For the QSAT, we first determine whether two individuals are from the same subpopulation or from different subpopulations, using genotype data at a set of independent markers. We then perform an association test between the candidate marker and the quantitative trait, through incorporation of such information. Simulation results based on either coalescent models or empirical population genetics data show that the QSAT has a correct type I error rate in the presence of population stratification and that the power of the QSAT is higher than that of family-based association designs.  相似文献   

7.
Population stratification remains an important issue in case-control studies of disease-marker association, even within populations considered to be genetically homogeneous. Campbell et al. (Nature Genetics 2005;37:868-872) illustrated this by showing that stratification induced a spurious association between the lactase gene (LCT) and tall/short status in a European American sample. Furthermore, existing approaches for controlling stratification by use of substructure-informative loci (e.g., genomic control, structured association, and principal components) could not resolve this confounding. To address this problem, we propose a simple two-step procedure. In the first step, we model the odds of disease, given data on substructure-informative loci (excluding the test locus). For each participant, we use this model to calculate a stratification score, which is that participant's estimated odds of disease calculated using his or her substructure-informative-loci data in the disease-odds model. In the second step, we assign subjects to strata defined by stratification score and then test for association between the disease and the test locus within these strata. The resulting association test is valid even in the presence of population stratification. Our approach is computationally simple and less model dependent than are existing approaches for controlling stratification. To illustrate these properties, we apply our approach to the data from Campbell et al. and find no association between the LCT locus and tall/short status. Using simulated data, we show that our approach yields a more appropriate correction for stratification than does principal components or genomic control.  相似文献   

8.
European Americans are often treated as a homogeneous group, but in fact form a structured population due to historical immigration of diverse source populations. Discerning the ancestry of European Americans genotyped in association studies is important in order to prevent false-positive or false-negative associations due to population stratification and to identify genetic variants whose contribution to disease risk differs across European ancestries. Here, we investigate empirical patterns of population structure in European Americans, analyzing 4,198 samples from four genome-wide association studies to show that components roughly corresponding to northwest European, southeast European, and Ashkenazi Jewish ancestry are the main sources of European American population structure. Building on this insight, we constructed a panel of 300 validated markers that are highly informative for distinguishing these ancestries. We demonstrate that this panel of markers can be used to correct for stratification in association studies that do not generate dense genotype data.  相似文献   

9.
Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal or in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.  相似文献   

10.
人类复杂疾病关联研究中群体分层的检出和校正   总被引:2,自引:1,他引:2  
病例对照研究是鉴定多基因疾病易感位点重要的遗传流行病学方法, 而群体分层是导致病例对照研究关联研究结果出现偏倚甚至是假关联的重要原因之一。文章对人群分层的检出及校正的方法和原理进行了阐述, 包括基于核心家系的传递/不平衡检验(TDT)以及基于不相关基因组遗传标记的基因组对照(GC)和结构化关联(SA)等, 并且对这几种方法进行了比较。  相似文献   

11.
We examine the issue of population stratification in association-mapping studies. In case-control studies of association, population subdivision or recent admixture of populations can lead to spurious associations between a phenotype and unlinked candidate loci. Using a model of sampling from a structured population, we show that if population stratification exists, it can be detected by use of unlinked marker loci. We show that the case-control-study design, using unrelated control individuals, is a valid approach for association mapping, provided that marker loci unlinked to the candidate locus are included in the study, to test for stratification. We suggest guidelines as to the number of unlinked marker loci to use.  相似文献   

12.
Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional “north-south” population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused “outliers,” probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future.  相似文献   

13.
Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.  相似文献   

14.
OBJECTIVE: Case-control association studies in mixed populations can result in spurious disease-marker associations if subpopulation disease prevalence and marker frequencies both differ. Genomic control (GC) uses neutral loci to correct for spurious association (due to population stratification), but how well this works remains undetermined. METHODS: We simulated and mixed populations with different disease and marker frequencies but without marker-disease association. We generated case-control datasets, calculated the chi2 for disease association with each marker, and applied two GC procedures, dividing by the mean chi2 or median-chi2/0.456. RESULTS: Corrections became conservative (false positive rate [FPR] <5%) with increasing subpopulation prevalence and marker differences. The mean correction resulted in FPRs close to 5% at average subpopulation allele frequency differences <0.26, but inclusion of just a few markers with large frequency differences resulted in conservative FPRs. FPRs from the median correction were mostly conservative but became anticonservative when a few markers with large frequency differences were included. CONCLUSION: GC can both lead to a notable loss of power to detect a true association (conservative) in many circumstances or may fail to eliminate the spurious associations (anticonservative). The mean correction factor is useful in certain situations to correct population stratification, but it is difficult to know when those situations exist.  相似文献   

15.
Jiang N  Wang M  Jia T  Wang L  Leach L  Hackett C  Marshall D  Luo Z 《PloS one》2011,6(8):e23192

Background

It has been well established that theoretical kernel for recently surging genome-wide association study (GWAS) is statistical inference of linkage disequilibrium (LD) between a tested genetic marker and a putative locus affecting a disease trait. However, LD analysis is vulnerable to several confounding factors of which population stratification is the most prominent. Whilst many methods have been proposed to correct for the influence either through predicting the structure parameters or correcting inflation in the test statistic due to the stratification, these may not be feasible or may impose further statistical problems in practical implementation.

Methodology

We propose here a novel statistical method to control spurious LD in GWAS from population structure by incorporating a control marker into testing for significance of genetic association of a polymorphic marker with phenotypic variation of a complex trait. The method avoids the need of structure prediction which may be infeasible or inadequate in practice and accounts properly for a varying effect of population stratification on different regions of the genome under study. Utility and statistical properties of the new method were tested through an intensive computer simulation study and an association-based genome-wide mapping of expression quantitative trait loci in genetically divergent human populations.

Results/Conclusions

The analyses show that the new method confers an improved statistical power for detecting genuine genetic association in subpopulations and an effective control of spurious associations stemmed from population structure when compared with other two popularly implemented methods in the literature of GWAS.  相似文献   

16.
The genetic analysis of quantitative traits in humans is changing as a result of the availability of whole-genome SNP data. Heritability analysis can make use of actual genetic sharing between pairs of individuals estimated from the genotype data, rather than the expected genetic sharing implied by their family relationship. This could provide more accurate heritability estimates and help to overcome the equal environment assumption. Quantitative trait locus (QTL) linkage mapping can make use of local genetic sharing inferred from very dense local genotype data from pedigree members or individuals not previously known to be related. This approach may be particularly suited for detecting loci that contain rare variants with major effect on the phenotype. Finally, whole-genome SNP data can be used to measure the genetic similarity between individuals to provide matched sets for association studies, in order to avoid spurious association from population stratification.  相似文献   

17.
Empirical evidences suggest that both common and rare variants contribute to complex disease etiology. Although the effects of common variants have been thoroughly assessed in recent genome-wide association studies (GWAS), our knowledge of the impact of rare variants on complex diseases remains limited. A number of methods have been proposed to test for rare variant association in sequencing-based studies, a study design that is becoming popular but is still not economically feasible. On the contrary, few (if any) methods exist to detect rare variants in GWAS data, the data we have collected on thousands of individuals. Here we propose two methods, a weighted haplotype-based approach and an imputation-based approach, to test for the effect of rare variants with GWAS data. Both methods can incorporate external sequencing data when available. We evaluated our methods and compared them with methods proposed in the sequencing setting through extensive simulations. Our methods clearly show enhanced statistical power over existing methods for a wide range of population-attributable risk, percentage of disease-contributing rare variants, and proportion of rare alleles working in different directions. We also applied our methods to the IFIH1 region for the type 1 diabetes GWAS data collected by the Wellcome Trust Case-Control Consortium. Our methods yield p values in the order of 10−3, whereas the most significant p value from the existing methods is greater than 0.17. We thus demonstrate that the evaluation of rare variants with GWAS data is possible, particularly when public sequencing data are incorporated.  相似文献   

18.
Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial samples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study.  相似文献   

19.
In recent years it has emerged that structural variants have a substantial impact on genomic variation. Inversion polymorphisms represent a significant class of structural variant, and despite the challenges in their detection, data on inversions in the human genome are increasing rapidly. Statistical methods for inferring parameters such as the recombination rate and the selection coefficient have generally been developed without accounting for the presence of inversions. Here we exploit new software for simulating inversions in population genetic data, invertFREGENE, to assess the potential impact of inversions on such methods. Using data simulated by invertFREGENE, as well as real data from several sources, we test whether large inversions have a disruptive effect on widely applied population genetics methods for inferring recombination rates, for detecting selection, and for controlling for population structure in genome-wide association studies (GWAS). We find that recombination rates estimated by LDhat are biased downward at inversion loci relative to the true contemporary recombination rates at the loci but that recombination hotspots are not falsely inferred at inversion breakpoints as may have been expected. We find that the integrated haplotype score (iHS) method for detecting selection appears robust to the presence of inversions. Finally, we observe a strong bias in the genome-wide results of principal components analysis (PCA), used to control for population structure in GWAS, in the presence of even a single large inversion, confirming the necessity to thin SNPs by linkage disequilibrium at large physical distances to obtain unbiased results.  相似文献   

20.
Unaccounted population stratification can lead to spurious associations in genome-wide association studies (GWAS) and in this context several methods have been proposed to deal with this problem. An alternative line of research uses whole-genome random regression (WGRR) models that fit all markers simultaneously. Important objectives in WGRR studies are to estimate the proportion of variance accounted for by the markers, the effect of individual markers, prediction of genetic values for complex traits, and prediction of genetic risk of diseases. Proposals to account for stratification in this context are unsatisfactory. Here we address this problem and describe a reparameterization of a WGRR model, based on an eigenvalue decomposition, for simultaneous inference of parameters and unobserved population structure. This allows estimation of genomic parameters with and without inclusion of marker-derived eigenvectors that account for stratification. The method is illustrated with grain yield in wheat typed for 1279 genetic markers, and with height, HDL cholesterol and systolic blood pressure from the British 1958 cohort study typed for 1 million SNP genotypes. Both sets of data show signs of population structure but with different consequences on inferences. The method is compared to an advocated approach consisting of including eigenvectors as fixed-effect covariates in a WGRR model. We show that this approach, used in the context of WGRR models, is ill posed and illustrate the advantages of the proposed model. In summary, our method permits a unified approach to the study of population structure and inference of parameters, is computationally efficient, and is easy to implement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号