首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis 5230 spores were lyophilized in 0.067 M phosphate buffer and stored at 2 to 8°C for 9 to 27 months. The lyophilized spores were reconstituted with buffer or 0.9% saline, and the heat resistance was determined in a thermoresistometer. Lyophilization had no effect on the heat resistance of the spores but did result in a slight decrease in population (≤0.3-logarithm reduction). The lyophilized spores maintained heat resistance and population levels over the test periods. The D-values ranged from 0.44 to 0.54 min at 121.1°C, and the z-values ranged from 6.1 to 6.6°C. Lyophilization was concluded to be an acceptable alternative for storage of bacterial spores that are to be used as biological indicators in sterilization processes.  相似文献   

2.
Streptococcus lactis ME2 is a dairy starter strain that is insensitive to a variety of phage, including 18. The efficiency of plating of 18 on ME2 and N1 could be increased from <1 × 10−9 to 5.0 × 10−2 and from 7.6 × 10−7 to 2.1 × 10−2, respectively, when the host strains were subcultured at 40°C before plating the phage and the phage assay plates were incubated at 40°C. Host-dependent replication was demonstrated in N1 at 30°C and in N1 and ME2 at 40°C, suggesting the operation of a temperature-sensitive restriction and modification system in ME2 and N1. The increased sensitivity of ME2 and N1 to 18 at 40°C was also demonstrated by lysis of broth cultures and increased plaque size. ME2 grown at 40°C showed an increased ability to adsorb 18, indicating a second target for temperature-dependent phage sensitivity in ME2. Challenge of N1 with a 18 preparation that had been previously modified for growth on N1 indicated that at 40°C phage development was characterized by a shorter latent period and larger burst size than at 30°C. The evidence presented suggests that the high degree of phage insensitivity expressed by ME2 consists of a variety of temperature-sensitive mechanisms, including (i) the prevention of phage adsorption, (ii) host-controlled restriction of phage, and (iii) suppression of phage development. At 30°C these factors appear to act cooperatively to prevent the successful emergence of lytic phage active against S. lactis ME2.  相似文献   

3.
1. The reaction between an antistaphlycoccal phage and the homologous bacterium has been studied, applying the following experimental technics not used in earlier work reported from this laboratory: (a) Both the activity assay and the plaque count were utilized for determining [phage]. (b) Sampling was done at short intervals; i.e., every 0.1 hour. (c) Extracellular phage was separated from the cell-bound fraction by a filtration procedure permitting passage of < 95 per cent of free phage. 2. Using these technics, the reaction was followed: (a) with pH maintained at 6.10 and temperature at 28°C. to slow the process; (b) with pH maintained at 7.2 and temperature at 36°C. 3. In addition separate experiments were performed on the sorption of phage by bacteria at 30°, 23°, and 0°C. 4. At pH 6.10 and 28°C. the phage-bacterium reaction proceeds in the following sequence: (a) There is an initial phase of rapid logarithmic sorption of phage to susceptible cells, during which the total phage activity and the plaque numbers in the mixtures remain constant. (b) When 90 per cent of the phage has been bound, there is a sudden very rapid increase in phage activity not paralleled by an increase in plaques; i.e., phage is formed intracellularly, but is retained within cellular confines. (c) After a further drop in the extracellular phage fraction there occurs a pronounced increase in the total phage plaque count not accompanied by any increase in total activity. This indicates a redistribution of phage formed intracellularly. At the same time there is a rise in the extracellular phage curves (both activity and plaque). (d) With the concentrations of phage and bacteria used in the experiment carried out at pH 6.1 and 28°C. there are two further increments in [phage]act. before massive lysis begins. (e) During terminal lysis there are sharp rises in the curves for [total phage]plaq., [extracellular phage]act., and [extracellular phage]plaq.. (f) Immediately after the completion of lysis there is a considerable disparity between measurements of total phage and extracellular phage, probably occasioned by the association of phage molecules with cellular debris, the latter being of sufficient size to be removed by the super-cel filters. 5. At pH 7.2 and 36°C. the steps in the phage production curve as determined by activity assay and plaque count are much less prominent than those observed at pH 6.1 and 28°C. However, the plateaus described by Ellis and Delbrück (10) for B. coli and coli phage can be detected also in the present case if frequent samples are taken. 6. The sorption experiments show a significant rise in the rate of phage uptake with increase in temperature, again supporting the view that the reaction involves more than a purely physical adsorption. 7. Delbrück''s objections to: (a) the use of the activity assay for determining [total phage] in mixtures of phage and susceptible cells, and (b), to the demonstration of phage precursor in "activated" bacteria have been analyzed. 8. The activity assay has been demonstrated to be an accurate procedure for determining either phage free in solution or phage bound to living susceptible cells, under the conditions of the experiments reported here and in earlier work. 9. The titration values obtained in the experiments designed to exhibit intracellular phage precursor are not the result of artifacts as Delbrück has inferred. The data can be interpreted in terms of the precursor theory, although other explanations are not ruled out.  相似文献   

4.
The growth rates, the mutation frequency rate constants of the terramycin-resistant cells, the burst size of the phage-producing cells, and the ratio of phage to cells all have a temperature coefficient of about 2 from 20 to 35° (µ = 9 x 103 calories), with a maximum at 40°. The mutation frequency rate constant (or time rate constant) of the phage-producing cells increases from 20 to 45° with a temperature coefficient of about 3 (µ = 2 to 3 x 104 cal.). The change in the values for the growth rate, mutation rate, and cell volume occurs in less than 1 hour, after the temperature is changed. The value for the burst size of phage-producing cells changes for 3 to 4 hours. Prolonged growth of megatherium 899 at 48 to 50° results in the production of C + S phage, in place of T. Returning the culture to 25° results in the production of small T phage.  相似文献   

5.
A hypermodified base (Y-Thy) replaces 20% of the thymine (Thy) in mature DNA of Bacillus subtilis phage SP10. Two noncomplementing hypermodification-defective (hmd) mutants are described. At 30°C, hmd phage carried out a normal program, but at temperatures of ≥37°C, the infection process was nonproductive. When cells were infected at 37°C with hmd phage, DNA synthesis started at its usual time (12 min), proceeded at about half the normal rate for 6 to 8 min, and then stopped or declined manyfold. All, or nearly all, of the DNA made under hmd conditions consisted of fully hypermodified parental DNA strands H-bonded to unhypermodified nascent strands. The reduced levels of DNA synthesis observed under hmd conditions were accompanied by weak expression of late genes. A sucrose gradient analysis of SP10 hmd+ replicating DNA intermediates was made. Two intermediates, called VG and F, were identified. VF consisted of condensed DNA complexed to protein; VF also contained negatively supercoiled domains covalently joined to relaxed regions. F was composed of linear concatenates from which mature DNA was cleaved. None of those intermediates was evident in cells infected at 37°C with hmd phage. Shiftup experiments were performed wherein cells infected with hmd phage at 30°C were shifted to 37°C at a time when replication was well under way. DNA synthesis stopped or declined manyfold 10 min after shiftup. The hmd DNA made after shiftup was conserved as a form sedimentationally equivalent to the F intermediate, but little mature DNA was evident. It is proposed that Y-Thy is required for replication and DNA maturation because certain key proteins involved with these processes interact preferentially with hypermodified DNA.  相似文献   

6.
The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37°C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25°C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25°C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37°C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.  相似文献   

7.
The possible effect of virus adaptation to different transmission routes on virus stability in the environment is not well known. In this study we have compared the stabilities of three viruses within the Bunyaviridae family: the rodent-borne Hantavirus Hantaan virus (HTNV), the sand fly-borne Phlebovirus sandfly fever Sicilian virus (SFSV), and the tick-borne Nairovirus Crimean-Congo hemorrhagic fever virus (CCHFV). These viruses differ in their transmission routes: SFSV and CCHFV are vector borne, whereas HTNV is spread directly between its hosts, and to humans, via the environment. We studied whether these viruses differed regarding stability when kept outside of the host. Viral survival was analyzed at different time points upon exposure to different temperatures (4°C, 20°C, and 37°C) and drying at 20°C. We observed clearly different stabilities under wet conditions, particularly at 4°C, where infectious SFSV, HTNV, and CCHFV were detectable after 528, 96, and 15 days, respectively. All three viruses were equally sensitive to drying, as shown by drying on aluminum discs. Furthermore, HTNV and SFSV partially survived for 2 min in 30% ethanol, whereas CCHFV did not. Electron microscopy images of HTNV, SSFSV, and CCHFV stored at 37°C until infectivity was lost still showed the occurrence of virions, but with abnormal shapes and densities compared to those of the nonincubated samples. In conclusion, our study points out important differences in ex vivo stability among viruses within the Bunyaviridae family.  相似文献   

8.
1. The effects of temperature and H-ion concentration on the reaction between antistaphylococcus phage and a susceptible staphylococcus have been studied. 2. The temperature optimum for phage production is in the neighborhood of 35°C. and that for bacterial growth is approximately 40°C. 3. With increasing H-ion concentrations there occur: (a) an increase in the lag phase of bacterial growth without any corresponding increase in the lag phase of phage production; (b) a diminution in the total bacterial population accumulating in the medium without any corresponding drop in the total amount of phage formed. 4. With increasing alkalinity there is no pronounced change in the curves of bacterial growth and phage formation. At pH 8.5 the lytic threshold is increased to about 1000 phage units per bacterium instead of 100–140 as is usually the case and the time of lysis is delayed. 5. By adjusting the medium to pH 6 and 28°C. bacterial growth can be completely inhibited while phage production continues at a rapid rate. 6. Apparently, the previously stressed importance of bacterial growth as the prime conditioning factor for phage formation does not hold, for under certain experimental conditions the two mechanisms can be dissociated.  相似文献   

9.
Tubulin Isotypes in Rye Roots Are Altered during Cold Acclimation   总被引:7,自引:4,他引:3       下载免费PDF全文
The cold stability of cortical microtubules in root-tip cells of winter rye (Secale cereale L. cv Puma) is altered by growth temperature (GP Kerr, JV Carter [1990] Plant Physiol 93:77-82). One hypothesis for the basis of this alteration is that different tubulin isotypes are present at different growth temperatures, and that the cold stability of microtubules is affected by these isotypic differences. We have explored the first part of this hypothesis by comparing protein extracts from roots of seedlings grown for 2 days at 22°C (nonacclimated) or for an additional 2 or 4 days at 4°C (cold-acclimated). Immunoblots of two-dimensional polyacrylamide gels were probed with monoclonal antibodies to α- and β-tubulin. At least six α- and seven β-tubulins were present in the extracts from both the nonacclimated and cold-acclimated roots. Changes in electrophoretic mobility and isotype number of both α- and β-tubulin were observed after only 2 days at 4°C. Further changes in tubulin were observed after 4 days at 4°C. Changes in α-tubulin were more pronounced than those in β-tubulin.  相似文献   

10.
A rapid slide plaque technic for bacteriophage assay   总被引:2,自引:2,他引:0       下载免费PDF全文
1. A modified rapid plaque-counting procedure is described, whereby staphylococcal phage host-cell suspensions in agar are spread over constant areas on glass slides and are incubated in moist chambers. 2. Statistical analysis indicated a precision of ±8.2 for means of sets of eight slides incubated at 37°C. and ±7.6 for means of sets of eight incubated at 28°C. 3. With the staphylococcus system, a temperature of 28°C. yielded significantly higher counts than at 37°C. 4. Counts made after 4 hours may be used as an estimate of the final plaque count bearing in mind the fact that the yield at this time is significantly less than at 24 hours. 5. The data presented compared favorably with the results obtained by the plate method used by Hershey, and suggest that a greater precision may be obtained by this method—at least for the staph. K phage system.  相似文献   

11.
Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30′. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album.  相似文献   

12.
Arctic Mesorhizobium sp. N33 isolated from nodules of Oxytropis arctobia in Canada’s eastern Arctic has a growth temperature range from 0°C to 30°C and is a well-known cold-adapted rhizobia. The key molecular mechanisms underlying cold adaptation in Arctic rhizobia remains totally unknown. Since the concentration and contents of metabolites are closely related to stress adaptation, we applied GC-MS and NMR to identify and quantify fatty acids and water soluble compounds possibly related to low temperature acclimation in strain N33. Bacterial cells were grown at three different growing temperatures (4°C, 10°C and 21°C). Cells from 21°C were also cold-exposed to 4°C for different times (2, 4, 8, 60 and 240 minutes). We identified that poly-unsaturated linoleic acids 18∶2 (9, 12) & 18∶2 (6, 9) were more abundant in cells growing at 4 or 10°C, than in cells cultivated at 21°C. The mono-unsaturated phospho/neutral fatty acids myristoleic acid 14∶1(11) were the most significantly overexpressed (45-fold) after 1hour of exposure to 4°C. As reported in the literature, these fatty acids play important roles in cold adaptability by supplying cell membrane fluidity, and by providing energy to cells. Analysis of water-soluble compounds revealed that isobutyrate, sarcosine, threonine and valine were more accumulated during exposure to 4°C. These metabolites might play a role in conferring cold acclimation to strain N33 at 4°C, probably by acting as cryoprotectants. Isobutyrate was highly upregulated (19.4-fold) during growth at 4°C, thus suggesting that this compound is a precursor for the cold-regulated fatty acids modification to low temperature adaptation.  相似文献   

13.
1. The rate of inactivation of an anti-coli phage by filtrates of cultures of the homologous bacteria has been studied. 2. The inactivation rate at 37°C. is proportional to phage concentration and filtrate concentration. 3. At 0°C. the rate of phage inactivation becomes proportional to the square root of the filtrate concentration. 4. A reaction scheme to account for these observations is suggested and discussed. 5. This coli-phage is also inactivated by relatively large concentrations of soluble starch, inulin, gum arabic, and acetylated gum arabic. 6. The inactivation is markedly influenced by salt concentration, being rapid at moderate salt concentrations and slow at high or extremely low salt concentrations. 7. The inactivated phage cannot be regenerated by high salt concentrations, or by soaps.  相似文献   

14.
A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection.  相似文献   

15.
Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects. Fecal samples from 10 healthy controls, 10 irritable bowel syndrome and 8 inflammatory bowel disease patients were collected on site, aliquoted immediately after defecation and stored at -80°C, -20°C for 1 week, at +4°C or room temperature for 24 hours. Fecal transport swabs (FecalSwab, Copan) were collected and stored for 48-72 hours at room temperature. We used pyrosequencing of the 16S gene to investigate the stability of microbial communities. Alpha diversity did not differ between all storage methods and -80°C, except for the fecal swabs. UPGMA clustering and principal coordinate analysis showed significant clustering by test subject (p<0.001) but not by storage method. Bray-Curtis dissimilarity and (un)weighted UniFrac showed a significant higher distance between fecal swabs and -80°C versus the other methods and -80°C samples (p<0.009). The relative abundance of Ruminococcus and Enterobacteriaceae did not differ between the storage methods versus -80°C, but was higher in fecal swabs (p<0.05). Storage up to 24 hours (at +4°C or room temperature) or freezing at -20°C did not significantly alter the fecal microbial community structure compared to direct freezing of samples from healthy subjects and patients with gastrointestinal disorders.  相似文献   

16.
Cultures of megatherium 899a, growing under different conditions, were exposed to ultraviolet or white light. 1. Cultures exposed to ultraviolet light and then to white light continue to grow at the normal rate. Cultures exposed to ultraviolet light and then placed in the dark grow at the normal rate for varying lengths of time, depending on conditions, and then lyse with the liberation of from 5 to 1000 phage particles per cell, depending on the culture medium. 2. Increasing the time of exposure to ultraviolet light results in an increase in the fraction of cells which lyse in the dark. The lysis time decreases at first, remains constant over a wide range of exposure, and then increases. The lysis can be prevented by visible light after short exposure, but not after long exposures. 3. The time required for lysis is independent of the cell concentration. 4. Effect of temperature. After exposure to ultraviolet the cell concentration increases about 4 times at 20°, 30°, or 35°C., but only 1.5 to 2.0 times at 40–45°. This is due to the fact that the growth rate of the culture reaches a maximum at 38° while the lysis rate increases steadily up to 45°. 5. Terramycin decreases the growth rate and lysis rate in proportion. 6. At pH 5.1, the cultures continue to grow slowly in the dark after exposure to ultraviolet light. 7. Megatherium sensitive cells infected with T phage lyse more rapidly than ultraviolet-treated 899a, and visible light does not affect the lysis time. The results agree with the assumption that exposure to ultraviolet results in the production of a toxic (mutagenic) substance inside the bacterial cell. This substance is inactivated by white light.  相似文献   

17.
18.
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.  相似文献   

19.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号