首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid-based transfection assays provide a rapid means to measure homologous and nonhomologous recombination in mammalian cells. Often it is of interest to examine the stimulation of recombination by DNA damage induced by radiation, genotoxic chemicals, or nucleases. Transfection is frequently performed by using calcium phosphate coprecipitation (CPP), because this method is well suited for handling large sample sets, and it does not require expensive reagents or equipment. Alternative transfection methods include lipofection, microinjection, and electroporation. Since DNA strand breaks are known to stimulate both homologous and nonhomologous recombination, the induction of nonspecific damage during transfection would increase background recombination levels and thereby reduce the sensitivity of assays designed to detect the stimulation of recombination by experimentally induced DNA damage. In this article, we compare the stimulatory effects of nuclease-induced double-strand breaks (DSBs) on homologous and nonhomologous recombination for molecules transfected by CPP and by electroporation. Although electroporation yielded fewer transfectants, both nonhomologous and homologous recombination were stimulated by nuclease-induced DSBs to a greater degree than with CPP. Ionizing radiation is an effective agent for inducing DNA strand breaks, but previous studies using CPP generally showed little or no stimulation of homologous recombination among plasmids damaged with ionizing radiation. By contrast, we found clear dose-dependent enhancement of recombination with irradiated plasmids transfected using electroporation. Thus, electroporation provides a higher signal-to-noise ratio for transfection-based studies of damage-induced recombination, possibly reflecting less nonspecific damage to plasmid DNA during transfection of mammalian cells.  相似文献   

2.
We determined the effect of 3-methoxybenzamide (3-MB), a competitive inhibitor of poly(ADP-ribose)polymerase (E.C. 2.4.2.30), on illegitimate and extrachromosomal homologous recombination in mouse Ltk- cells. Cells were transfected with a wild type Herpes thymidine kinase (tk) gene or with two defective tk gene sequences followed by selection for tk-positive colonies. Using a wild type tk gene, colony formation required uptake, integration, and expression of the tk gene. Using defective tk genes, colony formation had the additional requirement for homologous recombination to reconstruct a functional tk gene. The presence of non-cytotoxic levels of 3-MB during and after transfection reduced the number of colonies recovered with a wild type tk gene in a dose-dependent manner, with 2 mM 3-MB causing a 10 to 20-fold reduction. 3-MB reduced the number of colonies recovered with defective tk genes only to the same extent as in transfections with a wild type gene. Treatment with 3-methoxybenzoic acid, a non-inhibitory analog of 3-MB, did not reduce the recovery of colonies in any experiment. Similar results were obtained using linear or supercoiled molecules and when defective tk genes were transfected into cells on one or two different DNA molecules. By assaying for transient expression of the tk gene, we found that 3-MB did not inhibit uptake or expression of the tk gene. We conclude that poly(ADP-ribosylation) plays a role in random integration (illegitimate recombination) of DNA but does not play an important role in extrachromosomal homologous recombination, demonstrating that these two recombination pathways in cultured mouse fibroblasts are biochemically distinct.  相似文献   

3.
4.
Most of the recombination assays based on the regeneration of selectable marker genes after transient infection or stable integration of DNA into mammalian cells are time consuming. We have used plasmids containing two truncated but overlapping segments of the neomycin resistance gene to rapidly quantitate and characterize the time course of extrachromosomal homologous recombination of DNA transfected into monkey COS cells. By transiently infecting cells with these recombination substrates, extracting Hirt DNA after 1 to 4 days, and transforming recombination-deficient Escherichia coli, we have shown that recombination between direct repeats occurs at frequencies of 1 to 4%. We have also used Southern blot analysis to directly characterize the recombination of this DNA in COS cells and to demonstrate that double-strand breaks in the region of homology increase recombination frequencies 10- to 50-fold.  相似文献   

5.
Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.  相似文献   

6.
M. A. Shammas  S. J. Xia    RJS. Reis 《Genetics》1997,146(4):1417-1428
Intrachromosomal homologous recombination, manifest as reversion of a 14-kbp duplication in the hypoxanthine phosphoribosyl transferase (HPRT) gene, is elevated in human cells either stably transformed or transiently transfected by the SV40 (simian virus 40) large T antigen gene. Following introduction of wild-type SV40, or any of several T-antigen point mutations in a constant SV40 background, we observed a strong correlation between the stimulation of chromosomal recombination and induction of host-cell DNA synthesis. Moreover, inhibitors of DNA replication (aphidicolin and hydroxyurea) suppress SV40-induced homologous recombination to the extent that they suppress DNA synthesis. Stable integration of plasmids encoding T antigen also augments homologous recombination, which is suppressed by aphidicolin. We infer that the mechanism by which T antigen stimulates homologous recombination in human fibroblasts involves DNA replicative synthesis.  相似文献   

7.
Clejan I  Boerckel J  Ahmed S 《Genetics》2006,173(3):1301-1317
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.  相似文献   

8.
The proteins encoded by the breast-cancer-susceptibility genes, BRCA1 and BRCA2, have recently been implicated in DNA-repair processes, thereby improving our understanding of how the loss of these genes contributes to cancer initiation and progression. It appears that the role of BRCA1 in DNA repair, which could involve the integration of several pathways, is broader than that of BRCA2. BRCA1 functions in the signalling of DNA damage and its repair by homologous recombination, nucleotide-excision repair and possibly non-homologous end-joining. BRCA2 has a more specific role in DNA repair, regulating the activity of RAD51, which is required for homologous recombination. An improved understanding of the interactions of BRCA1 and BRCA2 with other proteins in large macromolecular complexes is helping to reveal their exact role in DNA repair.  相似文献   

9.
The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, TOF1, and CSM3, which mediate the intra-S checkpoint response. srs2 Delta mrc1 Delta synthetic lethality is due to inappropriate recombination, as the lethality can be suppressed by genetic elimination of homologous recombination. srs2 Delta mrc1 Delta synthetic lethality is dependent on the role of Mrc1 in DNA replication but independent of the role of Mrc1 in a DNA damage checkpoint response. mrc1 Delta, tof1 Delta and csm3 Delta mutants have sister chromatid cohesion defects, implicating sister chromatid cohesion established at the replication fork as an important factor in promoting repair of stalled replication forks through gap repair.  相似文献   

10.
High levels of interstrand cross-link damage in mammalian cells cause chromatid breaks and radial formations recognizable by cytogenetic examination. The mechanism of radial formation observed following DNA damage has yet to be determined. Due to recent findings linking homologous recombination and non-homologous end-joining to the action of the Fanconi anemia pathway, we speculated that radials might be the result of defects in either of the pathways of DNA repair. To test this hypothesis, we have investigated the role of homologous recombination proteins RAD51 and RAD52, non-homologous end-joining proteins Ku70 and LIG4, and protein MRE11 in radial formation and cell survival following interstrand crosslink damage with mitomycin C. For the studies we used small inhibitory RNA to deplete the proteins from cells, allowing for evaluation of radial formation and cell survival. In transformed normal human fibroblasts, depletion of these proteins increased interstrand crosslink sensitivity as manifested by decreased cell survival and increased radial formation. These results demonstrate that inactivation of proteins from either of the two separate DNA repair pathways increases cellular sensitivity to interstrand crosslinks, indicating each pathway plays a role in the normal response to interstrand crosslink damage. We can also conclude that homologous recombination or non-homologous end-joining are not required for radial formation, since radials occur with depletion of these pathways.  相似文献   

11.
12.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

13.
14.
DT40 is an avian leucosis virus-transformed chicken B-lymphocyte line which exhibits high ratios of targeted to random integration of transfected DNA constructs. This efficient targeted integration may be related to the ongoing diversification of the variable segment of the immunoglobulin gene through homologous DNA recombination-controlled gene conversion. DT40s are a convenient model system for making gene-targeted mutants. Another advantage is the relative tractability of these cells, which makes it possible to disrupt multiple genes in a single cell and to generate conditionally gene-targeted mutants including temperature-sensitive mutants. There are strong phenotypic similarities between murine and DT40 mutants of various genes involved in DNA recombination. These similarities confirm that the DT40 cell line is a reasonable model for the analysis of vertebrate DNA recombination, despite obvious concerns associated with the use of a transformed cell line, which may have certain cell-line-specific characteristics. Here we describe our studies of homologous DNA recombination in vertebrate somatic cells using reverse genetics in DT40 cells.  相似文献   

15.
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits numerous biological responses including carcinogenicity. The molecular mechanism by which TCDD exerts its tumorigenic effects is unclear, since it does not directly damage DNA. TCDD-initiated toxicity can be mediated by the aryl hydrocarbon receptor (AhR) pathway and/or via increased oxidative stress. DNA damage, including DNA oxidation, can induce DNA double-strand breaks, which can be repaired through homologous recombination. Excessive DNA double-strand breaks may promote aberrant DNA recombination, which can lead to detrimental genetic changes and ultimately to carcinogenesis. TCDD has been shown to induce homologous recombination but the molecular mechanism mediating these events are unknown. To investigate the role of the AhR and oxidative DNA damage in mediating TCDD-induced homologous recombination we used a Chinese hamster ovary (CHO) cell line containing a neo direct repeat recombination substrate (CHO 3-6). CHO 3-6 cells were exposed to TCDD (50, 500 or 1000 pM) in the presence or absence of an AhR antagonists (0.1 microM alpha-naphthoflavone (alpha-NF)) for 6 or 24 h and 2 weeks later homologous recombination frequencies were determined by counting the number of neo expressing, G418-resistant colonies per live cells plated. TCDD-initiated DNA oxidation was determined by measuring the formation of 8-hydroxy-2'-deoxyguanosine via HPLC and electrochemical detection. Exposure to 500 pM TCDD for 24 h significantly increased the frequency of homologous recombination. Southern blot analysis on G418-resistant colonies determined that TCDD induced both conservative gene conversion events and deletion events. DNA oxidation was not increased in cells exposed to TCDD for either 6 or 24 h. However, alpha-naphthoflavone exposure resulted in a significant decrease in TCDD-induced homologous recombination frequency. These results suggest that TCDD-initiated homologous recombination in CHO 3-6 cells is mediated by the AhR and not via increased oxidative stress.  相似文献   

16.
Lee SA  Baker MD 《DNA Repair》2007,6(6):809-817
The tumor suppressor BRCA2 is considered to play an important role in the maintenance of genome integrity through the repair of DNA lesions by homologous recombination. A mechanistic understanding of BRCA2 has been complicated by the embryonic lethality of mice bearing allelic knockouts of Brca2, and by variation in the DNA damage response in cells bearing BRCA2 deficiencies. It would be advantageous to develop approaches that avoid the cell lethality associated with complete inactivation of the gene, or the use of established tumor cell lines in which other genes in addition to BRCA2 may be mutant. In this study, SiRNA was used in stable transformation assays to knockdown Brca2 in mouse hybridoma cells by at least 75%. The Brca2-depleted cells were analyzed with respect to cell growth, sensitivity to DNA damaging agents (mitomycin C, methylmethane sulfonate, or ionizing radiation), intrachromosomal homologous recombination and gene targeting. Although the effect of Brca2-depletion on cell growth and sensitivity to DNA damaging agents was modest, the Brca2-depleted cells did show a significant shift in homologous recombination from gene conversion to single-strand annealing and a significant decrease in the efficiency of gene targeting. Both of these phenotypes are consistent with the proposed role of Brca2 in DNA repair and recombination.  相似文献   

17.
Activation of poly (ADP-ribose) polymerase -1 (PARP-1) is an early DNA damage response event that, together with phosphorylation of p53, prompts various cellular functions important in the maintenance of the genome stability. In mammalian cells, DSB are repaired by nonhomologous end-joining (NHEJ) and by homologous recombination (HR). To investigate the role of PARP-1 in HR, CHO-K1 wild type and xrs-6 mutant cell line were transfected with pLrec plasmids which carry two nonfunctional copies of the β-galactosidase (lacZ) gene in a tandem array. In result of HR they can give rise to a functional copy of β-galactosidase. To test whether PARP-1 affects the frequency of spontaneous and induced recombination repair, we treated CHO-K1 and xrs6 clones carrying chromosomally integrated pLrec with the PARP-1 inhibitor 3-aminobenzamide (3AB). Our results show that the spontaneous homologous intrachromosomal recombination frequency between the two lacZ copies was almost two orders of magnitude higher in xrs6 cells than in CHO-K1 cells, but that it was not affected by 3AB treatment. Induction of DNA damage by irradiation or electroporation of restriction enzymes did not significantly increase the recombination frequency. Furthermore, in both the cell lines, the effect of PARP-1 inhibition on DSB repair was examined using the neutral comet assay. There was no effect of 3AB treatment on DSB rejoining after 10 Gy irradiation. The results presented support the conclusion that PARP-1 is not directly involved in HR.  相似文献   

18.
Regulation of Rad51 function by phosphorylation   总被引:1,自引:0,他引:1  
Rad51 is a key enzyme involved in DNA double-strand break repair by homologous recombination. Here, we show that in response to DNA damage, budding yeast Rad51 is phosphorylated on Ser 192 in a manner that is primarily mediated by the DNA-damage-responsive protein kinase Mec1. We show that mutating Rad51 Ser 192 to Ala or Glu confers hypersensitivity to DNA damage and homologous-recombination defects. Furthermore, biochemical analyses indicate that Ser 192 is required for Rad51 adenosine triphosphate hydrolysis and DNA-binding activity in vitro, whereas mutation of Ser 192 does not interfere with Rad51 multimer formation. These data suggest a model in which Mec1-mediated phosphorylation of Rad51 Ser 192 in response to DNA damage controls Rad51 activity and DNA repair by homologous recombination.  相似文献   

19.
Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.  相似文献   

20.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号