首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how environmental factors interact to determine the abundance and distribution of animals is a primary goal of ecology, and fundamental to the conservation of wildlife populations. Studies of these relationships, however, often assume static environmental conditions, and rarely consider effects of competition with ecologically similar species. In many parts of their shared ranges, grizzly bears Ursus arctos and American black bears U. americanus have nearly complete dietary overlap and share similar life history traits. We therefore tested the hypothesis that density patterns of both bear species would reflect seasonal variation in available resources, with areas of higher primary productivity supporting higher densities of both species. We also hypothesized that interspecific competition would influence seasonal density patterns. Specifically, we predicted that grizzly bear density would be locally reduced due to the ability of black bears to more efficiently exploit patchy food resources such as seasonally abundant fruits. To test our hypotheses, we used detections of 309 grizzly and 597 black bears from two independent genetic sampling methods in spatially‐explicit capture–recapture (SECR) models. Our results suggest grizzly bear density was lower in areas of high black bear density during spring and summer, although intraspecific densities were also important, particularly during the breeding season. Black bears had lower densities in areas of high grizzly bear density in spring; however, density of black bears in early and late summer was best explained by primary productivity. Our results are consistent with the hypothesis that smaller‐bodied, more abundant black bears may influence the density patterns of behaviorally‐dominant grizzly bears through exploitative competition. We also suggest that seasonal variation in resource availability be considered in efforts to relate environmental conditions to animal density.  相似文献   

2.
Using resource selection functions, we examined habitat selection patterns of barren-ground grizzly bears (Ursus arctos) in the central Canadian Arctic among and within home ranges. There was no difference between the sexes with regard to habitat selection patterns at the home range level (Wilks' 5, approx. F11,11=1.27, P=0.37). Bear home ranges contain more esker habitat, tussock/hummock successional tundra, lichen veneer, birch seep, and tall shrub riparian areas relative to the proportional availability of habitats in the study area. We observed differences in habitat selection within home ranges among levels of sex/reproductive status (Wilks' 5, approx. F20,412=3.32, P<0.001) and by season (Wilks' 5, approx. F30,605=2.71, P<0.001). Eskers and tall shrub riparian zones were the habitats most preferred by bears throughout the year. Tussock/hummock successional tundra was also favored by males at varying times during the year and lichen veneers were favored in spring and autumn by most bears. Females with cubs tended to avoid the highest ranked habitat for males throughout the year. This pattern of habitat selection was not observed for females without accompanying young. Results of this study underline the importance of scale dependence in habitat selection. Failure to view habitat selection as a hierarchical process may result in a narrow and possibly misleading notion of habitat selection patterns.  相似文献   

3.
We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595 ± 31 m SE) in spring and lower elevations (1,436 ± 27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains. © 2011 The Wildlife Society.  相似文献   

4.
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.  相似文献   

5.
Annual home-range size indices for 36 male and 52 female adult brown bears Ursus arctos in two study areas in central and northern Scandinavia were estimated to evaluate factors believed to influence home-range size. Male home ranges were larger than home ranges of lone females after controlling for the sexual size dimorphism acting on metabolic needs. Further, home ranges of females with cubs were smaller than home ranges of lone females and females with yearlings. Thus, differences in metabolic need were not able to explain the variation in range size among females of different reproductive categories or between males and females, suggesting roaming behaviour of males in this promiscuous species. Home-range size in both males and females was inversely related to population density along a density gradient that was not linked to food availability. This contradicts the hypothesis that females use the minimum areas that sustain their energy requirements. However, on a large geographical scale a negative relationship between range size and food availability was evident. The annual home ranges in inland boreal environments in Scandinavia are the largest reported for brown bears in Eurasia, and similar to those in inland boreal and montane environments in North America.  相似文献   

6.
Spacing behaviour of female mammals is suggested to depend on the distribution and abundance of food. In addition, food limitation has been found to constrain the reproductive success of females. However, whether females maximize their reproductive success by adjusting space use in relation to current food availability and reproductive effort (e.g. litter size) has not been experimentally studied. We examined these questions by manipulating simultaneously food resources (control vs. food supplementation) and litter sizes (control vs. plus two pups) of territorial female bank voles (Clethrionomys glareolus) in large outdoor enclosures. Females with supplementary food had smaller home ranges (foraging area) and home range overlaps than control females, whereas litter size manipulation had no effect on space use. In contrast, the size of territory (exclusive area) was not affected by food supplementation or litter size manipulation. As we have previously shown elsewhere, extra food increases the reproductive success of bank vole females in terms of size and proportion of weaned offspring. According to the present data, greater overlap of female home ranges had a negative effect on reproductive success of females, particularly on survival of offspring. We conclude that higher food availability increases the reproductive success of bank vole females, and this effect may be mediated through lower vulnerability of offspring to direct killing and/or detrimental effects from other females in the population. Moreover, it seems that when density of conspecifics is controlled for, home range sizes of females, but not territoriality, is related to food resources in Clethrionomys voles.  相似文献   

7.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

8.
Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.  相似文献   

9.
Determinants of Home Range Size for Polar Bears (Ursus maritimus)   总被引:1,自引:0,他引:1  
The mean home range size of female polar bears ( Ursus maritimus ; 125 100 km2 ± 11 800; n  = 93) is substantially larger than the predicted value (514 km2) for a terrestrial carnivore of similar weight. To understand this difference, we correlated home range size and sea ice characteristics. Home range size was related to (i) the ratio of land vs. sea within a given home range (42% of explained variance), and (ii) seasonal variation in ice cover (24%). Thus, bears using land during the ice-free season had larger home ranges and bears living in areas of great seasonal variation in ice cover also had larger home ranges. In another analysis we investigated how variation in a bear's environment in space and time affects its choice of home range. We found that polar bears adjusted the size of their home range according to the amount of annual and seasonal variation within the centre of their home range. For example, polar bears experiencing unpredictable seasonal and annual ice tended to increase their home range size if increasing home range size resulted in reducing variation in seasonal and annual ice. Polar bears make trade-offs between alternate space-use strategies. Large home ranges occur when variable ice cover is associated with more seals but also a more unpredictable distribution of those seals.  相似文献   

10.
The manner in which space is used by animals may influence several aspects of biology, including the pattern of resource use and intra-specific competition. We monitored 16 radio-collared female black bears (Ursus americanus) for 9,216 radio days during 1993–1995 in the White River National Wildlife Refuge (WRNWR), Arkansas, U.S.A. to investigate space use patterns. Annual home ranges (95% convex polygon) ranged from 2.10 to 11.34 km2 with a mean (± SD) size of 4.90 (± 2.09) km2 (n = 16). Largest home ranges were occupied by 2 females with yearlings during one year of study. Home ranges among neighbouring bears overlapped considerably. Although bears maintained larger home ranges during summer, the size of home range did not differ among seasons (P > 0.50). Our estimates of home range size for female black bears were smaller than those obtained in a study of the same population during 1979–1982. Because the size of the bear population at WRNWR was substantially smaller (about 130 bears) during 1979–1982 compared to the present population of ≥348 bears, these results suggested that population density and size of female black bear home ranges may be negatively correlated. Conservation implications of density-dependent space use pattern are also discussed.  相似文献   

11.
We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued. © 2011 The Wildlife Society.  相似文献   

12.
Martin JK  Martin AA 《Oecologia》2007,154(1):227-236
Mammalian mating systems are thought to be shaped by the spatial distribution and abundance of key resources, which in turn influence the spacing behaviour of individuals. In particular, female home range size is predicted to reflect the availability of key resources. We documented the availability and distribution of food and shelter resources for two neighbouring populations of bobucks, or mountain brushtail possums, Trichosurus cunninghami, that were characterised by different mating systems: our “forest population” was socially monogamous, whereas the “roadside population” was polygynous. Both silver wattle, Acacia dealbata, the main food resource for bobucks, and den-trees, which provided shelter, occurred at significantly higher density at the roadside site. The pattern of distribution of these two resources also differed between the sites. Both food and den-trees were scattered evenly throughout the roadside habitat. In contrast, den-trees were located predominantly at one end of the forest site, while silver wattle trees were located at the other. There was no significant difference in the amount of silver wattle, or in the number of den-trees, located within the home ranges of individual females at the two sites. However, forest females had home ranges, on average, almost three times the size of those of roadside females. At the roadside site, the size of female home ranges varied inversely with the density of silver wattle, indicating that these females ranged over as large an area as necessary to gain access to sufficient silver wattle trees. There was no such relationship among forest females. These populations provide a clear example of resource distribution determining female home range size. This influenced the number of female home ranges a male’s home range overlapped with, which in turn determined the mating system. Such clear links between resource availability and mating system have not previously been established in a marsupial.  相似文献   

13.
We quantified the effect of multiple environmental and biological determinants on variation in home range size across multiple spatial (total-home range–core-home range areas) and temporal (seasonal and all seasons combined) scales for 22 adult female polar bears (Ursus maritimus) from Svalbard, Norway (2003–2011). We also evaluated if considering spatiotemporal variation in home range size and location is valuable to assess variation in concentrations of persistent organic pollutants (POPs). In general, home range size was negatively related to the proportion of land within the home range and sea ice concentration, but positively to snow depth. However, effects typically differed between seasons and total, and core-home range size, providing evidence that home range size is scale dependent in this large Arctic mammal. Females accompanied by dependent offspring had smaller home ranges during the breeding season and spring compared to solitary females, while age and body mass did not explain variation in home range size. Correlations between POP concentration and space use were marginally significant, but consistently stronger at fine spatiotemporal resolutions (i.e. core-home ranges during the breeding season) compared to coarse resolution (i.e. total-home ranges over the entire year). We also found that the geographic location of the home range is a stronger ecological correlate of POP concentration than home range size. To improve our understanding of the relation between POPs and animal space use, we recommend increasing the temporal frequency of POP measurements to evaluate how POP concentrations vary during a year and across areas.  相似文献   

14.
We developed a conceptual model of spatial organization in vertebrates based upon changes in home range overlap with habitat quality. We tested the model using estimates of annual home ranges of adult females and densities for 30 populations of brown bears (Ursus arctos) in North America. We used seasonality as a surrogate of habitat quality, measured as the coefficient of variation among monthly actual evapotranspiration values for areas in which study populations were located. We calculated home range overlap for each population as the product of the average home range size for adult females and the estimated population density of adult females. Home range size varied positively with seasonality; however, home range overlap varied with seasonality in a nonlinear manner. Areas of low and high seasonality supported brown bears with considerable home range overlap, but areas of moderate seasonality supported brown bears with low home range overlap. These results are consistent with behavioural theory predicting a nonlinear relationship between food availability and territoriality.  相似文献   

15.
Access management is among the most important conservation actions for grizzly bears in North America. In Alberta, Canada, nearly all grizzly bear mortalities are caused by humans and occur near roads and trails. Consequently, understanding how bears move relative to roads is of crucial importance for grizzly bear conservation. We present the first application of step‐selection functions to model habitat selection and movement of grizzly bears. We then relate this to a step‐length analysis to model the rate of movement through various habitats. Grizzly bears of all sex and age groups were more likely to select steps closer to roads irrespective of traffic volume. Roads are associated with habitats attractive to bears such as forestry cutblocks, and models substituting cutblocks for roads outperformed road models in predicting bear selection during day, dawn, and dusk time periods. Bear step lengths increased near roads and were longest near highly trafficked roads indicating faster movement when near roads. Bear selection of roads was consistent throughout the day; however, time of day had a strong influence over selection of forest structure and terrain variables. At night and dawn, bears selected forests of intermediate age between 40 and 100 yr, and bears selected older forests during the day. At dawn, bears selected steps with higher solar radiation values, whereas, at dusk, bears chose steps that were significantly closer to edges. Because grizzly bears use areas near roads during spring and most human‐caused mortalities occur near roads, access management is required to reduce conflicts between humans and bears. Our results support new conservation guidelines in western North America that encourage the restriction of human access to roads constructed for resource extraction.  相似文献   

16.
17.
ABSTRACT Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi‐arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home‐range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north‐central Texas using radio‐telemetry and fixed kernel estimators. Median home‐range and core‐area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x?= 108.9 ha) as earlier published estimates based on visual observations (x?= 28–50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass‐forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass‐forb habitat. Kaplan‐Meier annual survival probabilities for females (0.452 ± 0.118[SE]) were twice that estimated for males (0.210 ± 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody‐shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass‐forb habitat that roadrunners avoid.  相似文献   

18.
Females of the bivoltine thrips Elaphrothrips tuberculatus (Hood) (Insecta: Thysanoptera) produce broods of either all males (by viviparity) or all females (by oviparity). Measurements of the sex-allocation ratio, ecological and physiological conditions affecting male and female offspring body size, and correlates of the relative fitnesses of adult males and females in relation to size indicate that female parents tend to be viviparous (produce males) if their offspring will become relatively large adults, and that males gain more in fitness from large size than do females. However, the conditions that link sex allocation with offspring fitness differ between the spring and summer generations. In spring, when breeding is synchronous, 1) oviparous and viviparous females do not differ in body size, 2) females tend to be viviparous where the fungus upon which they feed is relatively dense and where their offspring will become relatively large adults, and 3) fungus density is highly correlated with male and female offspring size. In summer, when breeding is relatively asynchronous, 1) viviparous females are much larger than oviparous females early (but not late) in the season, 2) large viviparous females begin breeding earlier than smaller ones, 3) offspring developing earlier in the season become larger adults, and 4) a higher proportion of females are viviparous earlier than later. Field experiments and field collections show that the covariation among sex allocation, conditions, and fitness is not caused by differential mortality by size or sex. Differences between the spring and summer generations in the cues used by females to adjust offspring sex ratio may be caused by seasonal variation in the factors that affect offspring size. However, in both generations, females tend to produce sons only when their offspring will become relatively large adults, whereas daughters are produced regardless of offspring size. These data suggest that females of E. tuberculatus avoid production of males (the sex with higher variance in expected fitness) when the size of their offspring is relatively uncertain.  相似文献   

19.
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

20.
Spatial distribution in mammals, and thereby home range size, is influenced by many different factors including body size, sex, age, reproductive status, season, availability of forage, availability of water, fragmentation of landscape, trophic level and intra- and inter-specific competition. Using linear mixed models, we looked for factors shaping the variation in size of spring-summer and winter home ranges for 51 radio-collared adult female roe deer at Trois Fontaines forest, Champagne–Ardenne, France (1996–2005). Home range size of females was larger in winter than in spring–summer, decreased with age, and decreased with increasing quality. Females in low quality areas adjusted the size of their home range to include more patches of habitat so that all female deer obtained similar amounts of food resources (total biomass of 6.73±2.34 tons (mean±SE) for each home range). Such adjustments of home range size in response to patchiness of resources led to marked between-female variation in home range size. Our results demonstrate that roe deer females have different tactics of habitat use according to spatial variations in habitat quality so that females get similar food resources in highly productive environments such as the Trois Fontaines forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号