首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.  相似文献   

2.
3.
《Cell reports》2020,30(9):3183-3194.e4
  1. Download : Download high-res image (116KB)
  2. Download : Download full-size image
  相似文献   

4.
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Comprehensive biochemical and genetic approaches are now starting to reveal the complex signaling pathways that mediate plant disease resistance. Initiation of defense signaling often involves specific recognition of invading pathogens by the products of specialized host resistance (R) genes. Potential resistance signaling components have been identified by mutational analyses to be required for specific resistance in the model Arabidopsis and some crop species. Strikingly, many of the components share similarity to that of innate immune systems in animals. Evidence is also accumulating that plant pathogens have a number of ways to evade host defenses during the early stages of infection, similar to animal pathogens. These strategies are becoming much better understood in a number of plant–pathogen interactions. In this review, we focus on the current knowledge of host factors that control plant resistance and susceptibility to fungal pathogens. The knowledge accumulated in these studies will serve a fundamental basis for combating diseases in strategic molecular agriculture.  相似文献   

5.
To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.  相似文献   

6.
7.
The entomopathogenic fungus Beauveria bassiana is widely used as a biological control agent (BCA) for insect pest control, with fungal propagules being either incorporated into the potting media or soil or sprayed directly onto the foliage or soil. To gain a better understanding of entomopathogenic fungal ecology when applied as a BCA to the soil environment, a case study using tag-encoded 454 pyrosequencing of fungal ITS sequences was performed to assess the fate and potential effect of an artificially applied B. bassiana strain on the diversity of soil fungal communities in an agricultural field in India. Results show that the overall fungal diversity was not influenced by application of B. bassiana during the 7 weeks of investigation. Strain-specific microsatellite markers indicated both an establishment of the applied B. bassiana strain in the treated plot and its spread to the neighboring nontreated control plot. These results might be important for proper risk assessment of entomopathogenic fungi-based BCAs.  相似文献   

8.
9.
Fungal communities play a major role as decomposers in the Earth''s ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4+ availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems.  相似文献   

10.
Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants.  相似文献   

11.
Bacterial diversity in sediments obtained along the Chilean margin from areas containing methane seeps, and a hydrate mound were explored by cloning and sequencing and multitag pyrosequencing (MTPS). These libraries were statistically compared to determine the robustness of taxonomic assignment derived from multiplexed pyrosequencing strategies targeting variable regions V1 and V2 of the small subunit rRNA gene for environmental studies. There was no statistical difference in the composition of the libraries, thus, MTPS was utilized to describe diversity in three geochemical zones in these environments. Unidentified Cyanobacteria isolates were abundant in the sulfate reduction zone (SRZ), Deltaproteobacteria were concentrated at the sulfate methane transition zone (SMTZ) and Chloroflexi/GNS dominated methanogenesis zone (MGZ). Although there was variation among specific groups, communities in the SRZ and MGZ did not differ significantly. However, the community dominated by Deltaproteobacteria differentiates the SMTZ from the other zones. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

12.
13.
Calcium-Mediated Responses of Maize to Oxygen Deprivation   总被引:6,自引:3,他引:3  
Oxygen limitation dramatically alters the patterns of gene expression as well as development of plants. Complete removal of O2 leads to an immediate cessation of protein synthesis followed by a selective synthesis of about twenty anaerobic proteins in maize (Zea mays L.) seedlings. Among these are enzymes involved in glycolysis and related processes. However, inducible genes that have different functions were also found; they may function in other, perhaps more long-term, processes of adaptations to flooding, such as aerenchyma formation and root-tip death. Our recent research has addressed two questions: how these gene expression changes are initiated and how do these responses culminate in the overall adaptation of plants to flooding-stress. The results obtained indicate that an early rise in cytosolic Ca2+ as well as a quick establishment of ionic homeostasis may be essential for the induction of adaptive changes at the cellular as well as organismal level.  相似文献   

14.
15.
花粉介导法获得玉米转基因植株(英文)   总被引:32,自引:0,他引:32  
利用花粉作为外源基因的载体进行遗传转化在玉米 (ZeamaysL .)上获得了成功。以玉米自交系太 910 1、综 31等为受体 ,以pGLⅡ_RC_1质粒为供体 ,在玉米开花期 ,用花粉与质粒DNA混合并附加超声波处理 ,然后辅以人工授粉的方法将外源基因导入到受体中。DNA斑点杂交和PCR扩增以及PCR_Southernblot杂交检测结果证明 ,几丁质酶基因确已导入玉米自交系中。所得结果表明 :玉米花粉可以介导外源基因的转化。利用花粉作为载体介导外源基因转化 ,避免了传统的基因枪法和土壤杆菌法转化所要求的组织培养技术 ,转化方法简单 ,易操作 ,具有很强的实用性  相似文献   

16.
利用脉冲电泳技术转化玉米获得转基因植株的研究   总被引:4,自引:1,他引:4  
本研究采用脉冲电泳技术将外源Bar基因和B-t基因转化玉米种胚并直接成苗,通过除草剂抗性初步筛选,再进行PCR检测、Southem杂交验证,探讨了脉冲电泳介导外源基因直接转化玉米种胚的有效性,结果表明:脉冲电泳技术介导玉米转基因是有效可行的,其T0代植株PCR阳性率与T1代植株转化率分别为11.36%和1.04%。在外源基因的转化中,处于不同启动子下的B-t基因和Bar基因共转化频率为90.9%。T1代PCR表现为阳性的植株Southem杂交结果显示脉冲电泳法介导的外源基因在受体中多为单拷贝,且已遗传给后代,并获得稳定表达。  相似文献   

17.
Nils  Fries 《Physiologia plantarum》1970,23(6):1149-1156
Cells of the ascomycele Ophiostoma multianulatum were sensitized to the supra-optimal temperature of 30°C either by heat shock or by UV irradiation. At this incubation temperature the death rate of the heat-shocked cells was higher than that of the irradiated cells. This difference was increased if hydrolysed casein was added to the incubation medium. The heat-shocked cells were also killed faster at 30°C, if nitrogen instead of air was bubbled through the cell suspension. Heat shock, in contrast to UV irradiation, strongly increased the sensitivity to a high concentration of sodium chloride.  相似文献   

18.
城市湿地(urban wetland)植物多样性水平高,并具有积极的净化和美化环境的作用。本研究以浙江绍兴镜湖城市湿地公园为研究样地,通过ICP-AES检测了人工园区和次生林土壤中几种金属元素(Al、Cr、Cu、K和Zn)的含量,比较不同类型的菌根植物——黑麦草(Lolium perenne L.)(AM)、六月霜(Monochasma sauatieri Franch)(AM)和乌饭树(Vaccinium bracteatum Thunb)(ERM)对金属元素的富集作用。通过高通量测序分析各宿主植物根部真菌群落的组成和结构,比较其对宿主植物金属富集能力的影响。结果表明:(1)人工园区土壤中5种金属元素的含量均显著高于次生林下的土壤;(2)乌饭树对Al的富集能力较强,黑麦草和六月霜富集Cr能力都较强;(3)3种植物根部真菌主要来自Ascomycota,而乌饭树根部Basidiomycota也是优势真菌,AM真菌在黑麦草和六月霜根部真菌群落结构中较少,而公认的ERM真菌Helotiales和Sebacinales在乌饭树根部真菌群落中的比例较高,且与所测金属元素无显著相关性。绍兴镜湖城市湿地公园次生林土壤环境保持良好。  相似文献   

19.
机械刺激是一种广泛存在但却长期被忽视的环境胁迫因子。由于其营固于土壤的生活习性,植物在其整个生命过程中都不同程度地遭受着机械刺激的胁迫,它影响着植物的生长发育、形态建成、抗逆性的形成等。本文结合我们实验室的研究成果及国内外的研究进展,综述了植物对机械刺激的响应、机械刺激在细胞内诱发的信号事件、各种信号之间的信号交谈及基因表达,并对未来的研究方向提出了展望。  相似文献   

20.
This review will focus on the molecular and genetic mechanisms underlying defense responses of roots to fungal pathogens. Soil-borne pathogens, including Phytophthora, Pythium, Fusarium, and Bipolaris, represent major sources of biotic stress in the rhizosphere and roots of plants. Molecular recognition and signaling leading to effective resistance has been demonstrated to occur between host and Phytophthora, or Pythium. The hypersensitive response and apoptotic cell death, two oxidative processes that limit biotrophic pathogens, generally act to exacerbate disease symptoms induced by necrotrophic organisms. Although pathogenesis-related proteins can be expressed in roots during pathogen challenge, salicylic acid has not been implicated in root-mediated interactions. Jasmonic acid and ethylene have been found to mediate parallel as well as synergistic pathways that confer partial tolerance to necrotrophic pathogens, as well as induced systemic resistance to root and foliar pathogens. Genomics approaches are revealing new networks of defense-signaling pathways, and have the potential of elucidating those pathways that are important in root-defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号