首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections in infants and the elderly. In the vast majority of cases, however, RSV infections run mild and symptoms resemble those of a common cold. The immunological, clinical, and epidemiological profile of severe RSV infections suggests a disease caused by a virus with typical seasonal transmission behavior, lacking clear-cut virulence factors, but instead causing disease by modifying the host’s immune response in a way that stimulates pathogenesis. Yet, the interplay between RSV-evoked immune responses and epidemic behavior, and how this affects the genomic evolutionary dynamics of the virus, remains poorly understood. Here, we present a comprehensive collection of 33 novel RSV subgroup A genomes from strains sampled over the last decade, and provide the first measurement of RSV-A genomic diversity through time in a phylodynamic framework. In addition, we map amino acid substitutions per protein to determine mutational hotspots in specific domains. Using Bayesian genealogical inference, we estimated the genomic evolutionary rate to be 6.47×10−4 (credible interval: 5.56×10−4, 7.38×10−4) substitutions/site/year, considerably slower than previous estimates based on G gene sequences only. The G gene is however marked by elevated substitution rates compared to other RSV genes, which can be attributed to relaxed selective constraints. In line with this, site-specific selection analyses identify the G gene as the major target of diversifying selection. Importantly, statistical analysis demonstrates that the immune driven positive selection does not leave a measurable imprint on the genome phylogeny, implying that RSV lineage replacement mainly follows nonselective epidemiological processes. The roughly 50 years of RSV-A genomic evolution are characterized by a constant population size through time and general co-circulation of lineages over many epidemic seasons – a conclusion that might be taken into account when developing future therapeutic and preventive strategies.  相似文献   

2.
Group A human rotaviruses (RVAs) annually cause the deaths of 215,000 infants and young children. To understand the epidemiological characteristics and genetic evolution of RVAs, we performed sentinel surveillance on RVA prevalence in a rotavirus-surveillance network in Hubei, China. From 2013 to 2016, a total of 2007 fecal samples from hospital outpatients with acute gastroenteritis were collected from four cities of Hubei Province. Of the 2007 samples, 153 (7.62%) were identified positive for RVA by real-time RT-PCR. RVA infection in Hubei mainly occurred in autumn and winter. The highest detection rate of RVA infection was in 1–2 years old of outpatients (16.97%). No significant difference of RVA positive rate was observed between females and males. We performed a phylogenetic analysis of the G/P genotypes based on the partial VP7/VP4 gene sequences of RVAs. G9P[8] was the most predominant strain in all four years but the prevalence of G2P[4] genotype increased rapidly since 2014. We reconstructed the evolutionary time scale of RVAs in Hubei, and found that the evolutionary rates of the G9, G2, P[8], and P[4] genotypes of RVA were 1.069 ​× ​10−3, 1.029 ​× ​10−3, 1.283 ​× ​10−3 and 1.172 ​× ​10−3 nucleotide substitutions/site/year, respectively. Importantly, using a molecular clock model, we showed that most G9, G2, P[8], and P[4] genotype strains dated from the recent ancestor in 2005, 2005, 1993, and 2013, respectively. The finding of the distribution of RVAs in infants and young children in Hubei Province will contribute to the understanding of the epidemiological characteristics and genetic evolution of RVAs in China.  相似文献   

3.
In order to investigate the genetic diversity and patterns of the co-circulating genotypes of respiratory syncytial virus (RSV) and their possible relationships with the severity of RSV infection, we studied all of the RSV-positive nasopharyngeal samples collected from children during five consecutive winters (2009–2010, 2010–2011, 2011–2012, 2012–2013 and 2013–2014). The RSVs were detected using the respiratory virus panel fast assay and single-tube RT-PCR, their nucleotides were sequenced, and they were tested for positive selection. Of the 165 positive samples, 131 (79.4%) carried RSV-A and 34 (20.6%) RSV-B; both groups co-circulated in all of the study periods, with RSV-A predominating in all the seasons except for winter 2010–2011, which had a predominance of RSV-B. Phylogenetic analysis of the RSV-A sequences identified genotypes NA1 and ON1, the second replacing the first during the last two years of the study period. The RSV-B belonged to genotypes BA9 and BA10. BA9 was detected in all the years of the study whereas BA only desultorily. Comparison of the subjects infected by RSV-A and RSV-B types did not reveal any significant differences, but the children infected by genotype A/NA1 more frequently had lower respiratory tract infections (p<0.0001) and required hospitalisation (p = 0.007) more often than those infected by genotype A/ON1. These findings show that RSV has complex patterns of circulation characterised by the periodical replacement of the predominant genotypes, and indicate that the circulation and pathogenic role of the different RSV strains should be investigated as each may have a different impact on the host. A knowledge of the correlations between types, genotypes and disease severity may also be important in order to be able to include the more virulent strains in future vaccines.  相似文献   

4.

Background

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level.

Methods

We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference.

Results

We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB.

Conclusions

Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.  相似文献   

5.
Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  相似文献   

6.
Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR), a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M−1 s−1, kd 1.21×10−4±0.707×10−4 s−1, KD 6.47×10−11±3.30×10−11 M; Q223R: ka 1.75×106±0.0245×106 M−1 s−1, kd 1.47×10−4±0.0505×10−4 s−1, KD 8.43×10−11±0.407×10−11 M). Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.  相似文献   

7.
Analyses of spontaneous mutation have shown that total genome‐wide mutation rates are quantitatively similar for most prokaryotic organisms. However, this view is mainly based on organisms that grow best around neutral pH values (6.0–8.0). In particular, the whole‐genome mutation rate has not been determined for an acidophilic organism. Here, we have determined the genome‐wide rate of spontaneous mutation in the acidophilic Acidobacterium capsulatum using a direct and unbiased method: a mutation‐accumulation experiment followed by whole‐genome sequencing. Evaluation of 69 mutation accumulation lines of Acapsulatum after an average of ~2900 cell divisions yielded a base‐substitution mutation rate of 1.22 × 10−10 per site per generation or 4 × 10−4 per genome per generation, which is significantly lower than the consensus value (2.5−4.6 × 10−3) of mesothermophilic (~15–40°C) and neutrophilic (pH 6–8) prokaryotic organisms. However, the insertion‐deletion rate (0.43 × 10−10 per site per generation) is high relative to the base‐substitution mutation rate. Organisms with a similar effective population size and a similar expected effect of genetic drift should have similar mutation rates. Because selection operates on the total mutation rate, it is suggested that the relatively high insertion‐deletion rate may be balanced by a low base‐substitution rate in Acapsulatum, with selection operating on the total mutation rate.  相似文献   

8.
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (K d) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.  相似文献   

9.
Aminoacyl-tRNA synthetases (ARSs) are in charge of cellular protein synthesis and have additional domains that function in a versatile manner beyond translation. Eight core ARSs (EPRS, MRS, QRS, RRS, IRS, LRS, KRS, DRS) combined with three nonenzymatic components form a complex known as multisynthetase complex (MSC).We hypothesize that the single-nucleotide polymorphisms (SNPs) of the eight core ARS coding genes might influence the susceptibility of sporadic congenital heart disease (CHD). Thus, we conducted a case-control study of 984 CHD cases and 2953 non-CHD controls in the Chinese Han population to evaluate the associations of 16 potentially functional SNPs within the eight ARS coding genes with the risk of CHD. We observed significant associations with the risk of CHD for rs1061248 [G/A; odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.81–0.99; P = 3.81×10−2], rs2230301 [A/C; OR = 0.73, 95%CI = 0.60–0.90, P = 3.81×10−2], rs1061160 [G/A; OR = 1.18, 95%CI = 1.06–1.31; P = 3.53×10−3] and rs5030754 [G/A; OR = 1.39, 95%CI = 1.11–1.75; P = 4.47×10−3] of EPRS gene. After multiple comparisons, rs1061248 conferred no predisposition to CHD. Additionally, a combined analysis showed a significant dosage-response effect of CHD risk among individuals carrying the different number of risk alleles (P trend = 5.00×10−4). Compared with individuals with “0–2” risk allele, those carrying “3”, “4” or “5 or more” risk alleles had a 0.97-, 1.25- or 1.38-fold increased risk of CHD, respectively. These findings indicate that genetic variants of the EPRS gene may influence the individual susceptibility to CHD in the Chinese Han population.  相似文献   

10.
Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto''s thyroiditis), as well as autoimmune hyperthyroidism (Graves'' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10−8) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1×10−8), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9×10−6), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5×10−4). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves'' disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2×10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2×10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9×10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.  相似文献   

11.
Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin (RELN) gene (p = 2.9 × 10−5 in women), with a significant gene-sex effect (p = 1.8 × 10−4). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 × 10−3 in women; p = 4.2 × 10−3 for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 × 10−7; p = 1.6 × 10−5 for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.  相似文献   

12.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2,6-dimethoxyphenol (Km = 2.6 × 10−5 ± 7 × 10−6 M), catechol (Km = 2.5 × 10−4 ± 1 × 10−5 M), pyrogallol (Km = 3.1 × 10−4 ± 4 × 10−5 M), and guaiacol (Km = 5.1 × 10−4 ± 2 × 10−5 M). In addition, the laccase catalyzed the polymerization of 1,8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen’s hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

13.
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.  相似文献   

14.
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130-230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130-230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 μg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.  相似文献   

15.
Pancreatic cancer shows very poor prognosis and is the fifth leading cause of cancer death in Japan. Previous studies indicated some genetic factors contributing to the development and progression of pancreatic cancer; however, there are limited reports for common genetic variants to be associated with this disease, especially in the Asian population. We have conducted a genome-wide association study (GWAS) using 991 invasive pancreatic ductal adenocarcinoma cases and 5,209 controls, and identified three loci showing significant association (P-value<5×10−7) with susceptibility to pancreatic cancer. The SNPs that showed significant association carried estimated odds ratios of 1.29, 1.32, and 3.73 with 95% confidence intervals of 1.17–1.43, 1.19–1.47, and 2.24–6.21; P-value of 3.30×10−7, 3.30×10−7, and 4.41×10−7; located on chromosomes 6p25.3, 12p11.21 and 7q36.2, respectively. These associated SNPs are located within linkage disequilibrium blocks containing genes that have been implicated some roles in the oncogenesis of pancreatic cancer.  相似文献   

16.
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.  相似文献   

17.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

18.
19.
For the identification of susceptibility loci for primary biliary cirrhosis (PBC), a genome-wide association study (GWAS) was performed in 963 Japanese individuals (487 PBC cases and 476 healthy controls) and in a subsequent replication study that included 1,402 other Japanese individuals (787 cases and 615 controls). In addition to the most significant susceptibility region, human leukocyte antigen (HLA), we identified two significant susceptibility loci, TNFSF15 (rs4979462) and POU2AF1 (rs4938534) (combined odds ratio [OR] = 1.56, p = 2.84 × 10−14 for rs4979462, and combined OR = 1.39, p = 2.38 × 10−8 for rs4938534). Among 21 non-HLA susceptibility loci for PBC identified in GWASs of individuals of European descent, three loci (IL7R, IKZF3, and CD80) showed significant associations (combined p = 3.66 × 10−8, 3.66 × 10−9, and 3.04 × 10−9, respectively) and STAT4 and NFKB1 loci showed suggestive association with PBC (combined p = 1.11 × 10−6 and 1.42 × 10−7, respectively) in the Japanese population. These observations indicated the existence of ethnic differences in genetic susceptibility loci to PBC and the importance of TNF signaling and B cell differentiation for the development of PBC in individuals of European descent and Japanese individuals.  相似文献   

20.
Antibodies elicited in rabbits by immunization with an N6-benzyladenosine-bovine serum albumin conjugate bound N6-benzyladenosine specifically. The affinity constants and specific binding site concentrations for a number of cytokinins and related compounds were estimated by nonlinear least squares analysis of direct or competitive ultrafiltration data. The antisera contained 230 to 330 nanomoles of cytokinin binding sites per gram protein. Affinity constants were 8.8 × 108 molar−1 for 6-benzylaminopurine, 8.4 × 107 molar−1 for kinetin, 9.1 × 107 molar−1 for 6-(3-methyl-2-butenylamino)purine, 6.6 × 106 molar−1 for 6-(4-hydroxy-3-methyl-trans-2-butenylamino)purine, and 2.0 × 104 molar−1 for 6-methylaminopurine. Affinity constants were below the limit of detectability (<104 molar−1) for benzylamine, adenine, and other adenine derivatives without an N6-side chain. The N6-substituent was thus immunodominant, but the purine moiety was also necessary for binding affinity. The antibodies were immobilized on cyanogen bromide-activated Sepharose with 95% retention of binding capacity and without apparent change in affinity constants. Columns of the immobilized antibody retained 64% of the [3H]6-(3-methyl-2-butenylam-ino)purine from 2 nanomolar solutions and readily trapped [14C]6-benzylaminopurine that had been added to crude extracts of cabbage. Aqueous 10% pyridine adjusted to pH 7.3 with formic acid effectively eluted bound cytokinins from gel columns without loss of binding capacity of the immobilized antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号