首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Diabetes Mellitus (DM), glucose and the aldehydes glyoxal and methylglyoxal modify free amino groups of lysine and arginine of proteins forming advanced glycation end products (AGEs). Elevated levels of these AGEs are implicated in diabetic complications including nephropathy. Our objective was to measure carboxymethyl cysteine (CMC) and carboxyethyl cysteine (CEC), AGEs formed by modification of free cysteine sulfhydryl groups of proteins by these aldehydes, in plasma proteins of patients with diabetes, and investigate their association with the albumin creatinine ratio (ACR, urine albumin (mg)/creatinine (mmol)), an indicator of nephropathy. Blood was collected from forty-two patients with type 1 and 2 diabetes (18–36 years) and eighteen individuals without diabetes (17–35 years). A liquid chromatography-mass spectrophotometric method was developed to measure plasma protein CMC and CEC levels. Values for ACR and hemoglobin A1C (HbA1C) were obtained. Mean plasma CMC (μg/l) and CEC (μg/l) were significantly higher in DM (55.73 ± 29.43, 521.47 ± 239.13, respectively) compared to controls (24.25 ± 10.26, 262.85 ± 132.02, respectively). In patients with diabetes CMC and CEC were positively correlated with ACR, as was HbA1C. Further, CMC or CEC in combination with HbA1C were better predictors of nephropathy than any one of these variables alone. These results suggest that glucose, glyoxal, and methylglyoxal may all be involved in the etiology of diabetic nephropathy.  相似文献   

2.
Advanced glycation end products (AGEs) contribute to changes in protein conformation, loss of function, and irreversible crosslinking. Using a library of dipeptides on cellulose membranes (SPOT library), we have developed an approach to systematically assay the relative reactivities of amino acid side chains and the N-terminal amino group to sugars and protein-AGEs. The sugars react preferentially with cysteine or tryptophan when both the alpha-amino group and the side chains are free. In peptides with blocked N-terminus and free side chains, cysteine, lysine, and histidine were preferred. Crosslinking of protein-AGEs to dipeptides with free side chains and blocked N termini occurred preferentially to arginine and tryptophan. Dipeptide SPOT libraries are excellent tools for comparing individual reactivities of amino acids for nonenzymatic modifications, and could be extended to other chemically reactive molecules.  相似文献   

3.
We examined the specificity of tyrosine's ability to increase catecholamine excretion by rats. Tyrosine alone among amino acids tested caused major increases in tissue and serum tyrosine, as well as urinary catecholamine levels. Large neutral amino acids (tryptophan, valine or isoleucine) and representatives of other classes of amino acids (glutamate, alanine, lysine or arginine) were unable to mimic tyrosine's action.  相似文献   

4.
The effects of modification of the arginine/lysine ratio of dietary protein on the cholesterol kinetics were studied in male rats. Single amino acids (lysine to soybean protein and arginine to casein) were added to approximate the arginine/lysine ratio in different proteins. After acclimation to these diets for 30 days, rats were administered intravenous [14C]cholesterol and oral [3H]cholesterol. Analysis of the die-away curve of [14C]cholesterol showed an apparent independence of cholesterol kinetics to the dietary manipulations, but there was a moderate reduction of the size of the slowly exchangeable pool and of the biliary concentration of cholesterol when lysine was added to soybean protein. Addition of amino acids neither influenced cholesterol absorption nor the fecal excretion of the radioactivities from labeled cholesterol. The results indicate that manipulating the arginine/lysine ratio of dietary protein by adding single amino acids is not necessarily effective in ameliorating cholesterol metabolism in rats, although the arginine addition caused a significant reduction of serum cholesterol and triglyceride.  相似文献   

5.
The Maillard reaction in vivo entails alteration of proteins or free amino acids by non-enzymatic glycation or glycoxidation. The resulting modifications are called advanced glycation end products (AGEs) and play a prominent role in various pathologies, including normoglycemic uremia. Recently, we established a new class of lysine amide modifications in vitro. Now, human plasma levels of the novel amide-AGEs N(6)-acetyl lysine, N(6)-formyl lysine, N(6)-lactoyl lysine, and N(6)-glycerinyl lysine were determined by means of LC-MS/MS. They were significantly higher in uremic patients undergoing hemodialysis than in healthy subjects. Model reactions with N(1)-t-butoxycarbonyl-lysine under physiological conditions confirmed 1-deoxy-d-erythro-hexo-2,3-diulose as an immediate precursor. Because formation of N(6)-formyl lysine from glucose responded considerably to the presence of oxygen, glucosone was identified as another precursor. Comparison of the in vivo results with the model experiments enabled us to elucidate possible formation pathways linked to Maillard chemistry. The results strongly suggest a major participation of non-enzymatic Maillard mechanisms on amide-AGE formation pathways in vivo, which, in the case of N(6)-acetyl lysine, parallels enzymatic processes.  相似文献   

6.
Kwak EJ  Lim SI 《Amino acids》2004,27(1):85-90
Summary. The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100°C for 1–12h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl.  相似文献   

7.
《Free radical research》2013,47(8):81-92
Abstract

The review deals with impairment of Ca2+-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca2+-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca2+-ATPase structure and function contributing to Ca2+ imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca2+-pump glycation, and their advantages and disadvantages are discussed.  相似文献   

8.

A gas chromatography-mass spectrometry (GC–MS) method was developed and validated in relevant concentration ranges for the simultaneous measurement of l-lysine (Lys, L) and its Nε- and Nα-methylated (M), Nε- and Nα-acetylated (Ac), Nε-carboxymethylated (CM) and Nε-carboxyethylated (CE) metabolites in human urine. Analyzed Lys metabolites were the post-translational modification (PTM) products Nε-mono-, di- and trimethyllsine, Nε-MML, Nε-DML, Nε-TML, respectively, Nα-ML, Nε-AcL, Nα-AcL, and its advanced glycation end-products (AGEs) Nε-CML, Nε-CM-[2,4,4-2H3]Lys (d3-CML), Nε-CEL and furosine. AGEs of arginine (Arg) and cysteine (Cys) were also analyzed. De novo synthesized trideutero-methyl esters (R-COOCD3) from unlabelled amino acids and derivatives were used as internal standards. Native urine samples (10 µL aliquots) were evaporated to dryness under a stream of nitrogen. Analytes were esterified using 2 M HCl in methanol (60 min, 80 °C) and subsequently amidated by pentafluoropropionic anhydride in ethyl acetate (30 min, 65 °C). The generated methyl ester-pentafluoropropionyl (Me-PFP) derivatives were reconstituted in borate buffer and extracted immediately with toluene. GC–MS analyses were performed by split-less injection of 1-µL aliquots, oven-programmed separation and negative-ion chemical ionization (NICI). Mass spectra were generated in the scan mode (range, m/z 50–1000). Quantification was performed in the selected-ion monitoring (SIM) mode using a dwell time of 50 or 100 ms for each ion. The GC–MS method was suitable for the measurement of Lys and all of its metabolites, except for the quaternary ammonium cation Nε-TML. The Me-PFP derivatives of Lys, Arg and Cys and its metabolites eluted in the retention time window of 9 to 14 min. The derivatization of Nε-CML, d3-CML and Nε-CEL was accompanied by partial Nε-decarboxylation and formation of the Me-PFP Lys derivative. The lowest derivatization yield was observed for Nε-DML, indicating a major role of the Nε-DML group in Lys derivatization. The GC–MS method enables precise (relative standard deviation, RSD?<?20%) and accurate (bias,?<?±?20%) simultaneous measurement of 33 analytes in human urine in relevant concentration ranges. We used the method to measure the urinary excretion rates of Lys and its PTM metabolites and AGEs in healthy black (n?=?39) and white (n?=?41) boys of the Arterial Stiffness in Offspring Study (ASOS). No remarkable differences were found indicating no ethnic-related differences in PTM metabolites and AGEs except for Nε-monomethyllysine and S-(2-carboxymethylcysteine).

  相似文献   

9.
We propose a specific, reproducible and sensitive HPLC method for the determination of N(epsilon)-(carboxymethyl)lysine (CML) excreted in urine. Total CML was measured in acid hydrolysates of urine samples, while free CML was measured in acetonitrile-deproteinised urine samples using a RP-HPLC method with ortho-phtaldialdehyde (OPA)-derivatisation and fluorescence detection suited for automation. We compared the CML excretion of 51 non-proteinuric patients with diabetes mellitus (DM) (age 57+/-14 years, HbA1c 8.0+/-1.8%) to 42 non-diabetic controls (C) (age 45+/-17 years). The urinary excretion of total CML in diabetic patients was increased by approximately 30% (DM: 0.58+/-0.21; C: 0.45+/-0.14 microM/mmol creatinine; P<0.001). While urinary excretion of free CML was not significantly different, excretion of bound CML was increased (DM: 0.36+/-0.17; C: 0.27+/-0.14; P<0.05) in diabetic patients. CML excretion was correlated with protein and albumin excretion, but did not correlate with HbA1c, duration of DM or diabetic complications such as neuropathy or retinopathy. Furthermore, no age-dependent change of total CML excretion was found, while free CML excretion was lower in younger subjects. The specific and sensitive determination of CML by RP-HPLC of its OPA-derivative is well suited for automation and better than that of less defined glycoxidation products (AGEs).  相似文献   

10.
Ageing and diabetes share a common deleterious phenomenon, the formation of Advanced Glycation Endproducts (AGEs), which accumulate predominantly in collagen due to its low turnover. Though the general picture of glycation has been identified, the detailed knowledge of which collagen amino acids are involved in AGEs is still missing. In this work we use an atomistic model of a collagen fibril to pinpoint, for the first time, the precise location of amino acids involved in the most relevant AGE, glucosepane. The results show that there are 14 specific lysine–arginine pairs that, due to their relative position and configuration, are likely to form glucosepane. We find that several residues involved in AGE crosslinks are within key collagen domains, such as binding sites for integrins, proteoglycans and collagenase, hence providing molecular-level explanations of previous experimental results showing decreased collagen affinity for key molecules. Altogether, these findings reveal the molecular mechanism by which glycation affects the biological properties of collagen tissues, which in turn contribute to age- and diabetes-related pathological states.  相似文献   

11.
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1–5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.  相似文献   

12.
Only part of the effect of dietary protein on urinary calcium excretion can be ascribed to sulfur amino acids. We hypothesized that chloride, another factor often associated with isolated proteins, and another amino acid, lysine, affect utilization of calcium. The effects of supplemental dietary chloride, inorganic or organic, on calcium, phosphorus, and magnesium utilization were studied in two rat studies. Weanling Sprague-Dawley rats were fed semi-purified diets that contained moderate (1.8 mg Cl/g diet) or supplemental (15.5 mg Cl/g diet) chloride as sodium chloride, potassium chloride, or lysine monohydrochloride with or without calcium carbonate for 56 or 119 days. Rats fed supplemental sodium chloride or potassium chloride had higher urinary phosphorus excretion, more efficient phosphorus absorption, but unchanged tissue phosphorus levels after 7 and 16 weeks of dietary treatment as compared to rats fed moderate chloride. Rats fed supplemental sodium chloride or potassium chloride excreted more calcium in urine at 7 weeks and absorbed calcium less efficiently at 16 weeks. Tissue calcium concentrations were unaffected, but total tibia magnesium and plasma magnesium concentrations were lower in rats fed supplemental sodium chloride or potassium chloride than those fed moderate chloride. Lysine chloride with or without additional calcium elevated urinary calcium excretion even more than sodium chloride and potassium chloride ingestion. Rats fed lysine chloride with supplemental calcium had smaller apparent absorption and urinary losses of phosphorus and magnesium after 16 weeks and lower tibia and plasma magnesium concentrations than rats fed lysine chloride.  相似文献   

13.
Several amino acids have been synthesized as model transport substrates building on the piperidine and cyclohexane rings. Only when the distal N atom is part of an unambiguously cationic structure are these compounds transported predominantly by the cationic amino acid system. These amino acids in labeled form are excreted rather slowly in unmodified state, very little 14CO2 being released. Those which are unambiguously cationic (including also homoarginine) led to a greatly increased excretion of arginine, lysine, ornithine and citrulline. Those which might be expected to act as lysine analogs had little effect on the excretion of the basic amino acids, although the excretion of citrulline and the sum of glutamine plus asparagine was accelerated. Certain of the analogs intensified the excretion of citrulline in dissociation from effects on resorption of the basic amino acids, also in dissociation from effects on cystine resorption. These results indicate citrulline resorption does not occur principally by the same agency serving for the basic amino acids, nor by the agency serving for cystine, despite the observed interactions for resorption. The injection of either of three transport analogs for arginine into the rat leads to early increases in the circulating levels of immunologically reactive insulin and glucagon.  相似文献   

14.
The Cu(II) complexes of tridentate amino acids and related amines in alkaline solution were studied by EPR spectroscopy. Line shapes, g∥ and A∥ of each amino acid complex were compared with those of the corresponding amine complex. The results indicate that aromatic amino acids, monoaminodicarboxylic amino acids, arginine, methionine, and lysine bind to Cu(II) via the amino and carboxyl α groups. On the other hand cysteine, 2-3-diaminopropionic acid and hydroxy amino acids appear to be coordinated through the α-amino group and the third potentially binding group. Evidence is presented for the formation of mixed complexes in the cases of histidine and 2-4-diaminobutyric acid, whereas a glycine-like complex with apical coordination of the δ-amino groups is proposed for the ornithine-Cu(II) complex.  相似文献   

15.
16.
The amino acids lysine and glycine are reported to react with glucose at physiological pH and temperature and undergo non-enzymic glycation. Three other amino acids present in relatively larger amounts in the lens i.e. alanine, aspartic acid and glutamic acid were also found to undergo non-enzymic glycation as found by incorporation of uniformly labelled (U-[14C]) glucose into the amino acids. The glucose incorporation was 1.6 to 2.5% for alanine, 35 to 50% for aspartic acid and 2.3 to 3.3% for glutamic acid. Each amino acid of varying concentrations lowered the extent ofin vitro glycation of lens proteins significantly in glucose-treated homogenates of normal lens from humans. The decrease in glycation for alanine was between 32 and 69%, that for aspartate was between 18 and 74%, and for glutamate was between 52 to 74%. Decreased glycation was greater for higher concentrations of glucose. Scavenging of intracellular glucose and decreasing the extent of glycation of lens proteins could be the mechanism of action by which the amino acids alanine, aspartic acid and glutamic acid could exercise a beneficial effect on cataract and diabetic retinopathy.  相似文献   

17.
Aims: The actin filaments present in circulating leukocytes facilitate their passage through microvenules and capillaries by helping in their deformability. Decreased deformability of granulocytes is now known to cause occlusion of the retinal microcapillaries leading to hypoxia and the subsequent development of diabetic retinopathy. Structural and functional loss of proteins, due to non-enzymatic glycation and glycoxidation, has been reported to cause diabetic pathogenesis. As amino acids have been earlier reported to have antidiabetic properties, the present study involves the investigation of the susceptibility of the cytoskeletal actin to glycation and its mitigation by free amino acids. This study also involves quantifying F-actin in cultured mononuclear cells obtained from diabetic and normal healthy volunteers and on the effect of glucose and free amino acids on F-actin content. Methods: Commercial non-muscle actin and actin immuno-pre-cipitated from granulocytes obtained from (a) normal healthy human volunteers and (b) patients with type 2 diabetes mellitus were subjected to glycation studies using [U] 14C glucose. The effect of free amino acids, as antiglycating agents, was determined using various concentrations of lysine, arginine, alanine, aspartic acid and glutamic acid. F-actin content in cultured mononuclear cells was estimated by flow cytometry using fluorescein isothiocynate (FITC)-Phalloidin. Results: Commercial actin at physiological conditions of pH and temperature was found to undergo non-enzymatic glycation. The extent of in vitro glycation was significantly low (P<0.001) in actin isolated from patients with type2 diabetes when compared to the non-diabetic group, suggesting an increased in vitro structural modification of actin in patients with diabetes. All the free amino acids tested were found to have varying degrees of antiglycating effect. The F-actin content in the intact mononuclear cells obtained from diabetic patients was found to be low when compared with normal healthy volunteers (P<0.001). Similarly the F-actin content was significantly low when the normal mononuclear cells were incubated with glucose. This effect was reversed upon the addition of free amino acids to the incubation mixture. Conclusions: Free amino acids can play a positive role in improving leukocyte deformability by mitigating cytoskeletal actin glycation and improving F-actin content.  相似文献   

18.
Summary In anaesthetized adult female rats, the influence of epidermal growth factor (EGF) on renal amino acid handling was investigated in glutamine, arginine (both 50 mg/100 g b. wt. per hour), or alanine (90 mg/ 100 g b. wt. per hour) loaded animals. Continuous infusions of the three amino acids were followed by an increase in the fractional excretion (FE) of the administered amino acids as well as of the other endogenous amino acids. Under load conditions (alanine, arginine or glutamine), EGF pretreatment (8g/100g b. wt. subcutaneously for 8 days, twice daily 8 a.m. and 4 p.m.) was followed by a stimulation of renal amino acid reabsorption. The increase in the fractional excretion of the administered amino acids was significantly lower than in non-EGF-treated rats. These changes in amino acid transport were connected with a significant reduction of GFR after EGF pretreatment (0.96 ± 0.10 vs. 0.62 ± 0.07 ml/min X 100 g b. wt.) and a distinct increase in sodium excretion (2.98 ± 0.55 vs. 4.97 ± 0.71val/100 g b. wt. X 20 min). After loading with p-aminohippurate (PAH; 200mg/100g b. wt.), PAH excretion in EGF rats was increased by about 20%, whereas urinary protein excretion was lower in EGF pretreated rats (control: 0.45 ± 0.04 vs. EGF: 0.18 ± 0.03 mg/ 100 g b. wt. X 20 min). The PAH load reduced amino acid reabsorption as a sign of overloading of renal tubular transport capacity, but in EGF pretreated animals the amino acid excretion was only slightly increased under these conditions. Furthermore, EGF pretreatment depressed normal kidney weight gain significantly (874 ± 18 vs. 775 ± 32mg/100g b. wt.). EGF can improve the renal tubular transport capacity, but, compared to well-known stimulators of renal transport like dexamethasone or tri-iodothyronine, its effect is only of a moderate degree.  相似文献   

19.
Urinary excretion of acid soluble peptide (ASP)-form amino acids was lower in rats deprived of protein than in rats fed on a 20% casein or 20% gluten diet. However, the amino acid pattern of urinary ASP was similar among each of the three dietary groups, suggesting that urinary ASP is mainly endogenous origin under these nutritional conditions.

College women who were given a meat-free protein diet for 3 days after 10 days’ protein deprivation excreted 1.4 times the amount of ASP-form amino acids during protein deprivation.

The rate of urinary excretion of ASP-form amino acids in the state of protein deprivation was proportional to the metabolic body size of organisms as far as rats and women were concerned.

Streptozotocin-induced diabetic rats excreted two times the amount of ASP-form amino acids compared with normal rats. This suggests that endogenous protein catabolism doubled in diabetic rats.

When labelled urinary ASP was injected into rats, approximately 40% of the label was recovered as urinary ASP within 24 hr. This excretion rate was far higher than that after the injection of free leucine.

The rate of urinary excretion of ASP-form amino acids correlated with that of Nτ-methylhistidine in rats.

These results favor the hypothesis that urinary ASP reflects the catabolism of body proteins.  相似文献   

20.
Advanced glycation end products (AGEs) are known to be involved in the pathogenesis of several diseases and therefore effects of AGEs on cells are the objective of numerous investigations. Since AGEs used in biochemical studies are usually not chemically characterized, comparison of data is difficult if not impossible. To find a suitable characterization protocol, human serum albumin was reacted with different concentrations of glucose, methyl glyoxal, and glyoxylic acid. The obtained AGEs were characterized with respect to the extent of side chain modifications (lysine and arginine), the carboxymethyl lysine and carbonyl content, and the fibrillar state. Additionally, their fluorescence and absorbance characteristics were extensively studied. Although we found significant differences in the degree of modification and in AGE-specific fluorescence when using different modifiers, the results provide important information and allow comparing AGEs derived from different modifier concentrations. The results also suggest strong conformational changes within the modified proteins. In the present paper we propose a set of parameters that is sufficient to partially characterize AGEs used for biochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号