首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞自噬是真核生物中高度保守的一类生物学途径,它通过降解细胞浆内不同组分,维持细胞自身平衡并帮助细胞在应激情况下生存。自噬在生物体生长发育、免疫防御、肿瘤抑制及神经退行性疾病中都有重大的意义。哺乳动物细胞中,自噬过程主要由自噬相关蛋白(Atg)所形成的一系列复合物所调控,这些蛋白质分别在自噬的启动、自噬泡的形成、延伸及成熟和降解过程中发挥重要的作用。在此,本文针对一些重要的自噬相关蛋白质对近年来自噬分子机制的研究进展做一总结。  相似文献   

2.
自噬是真核细胞中的一种保守的代谢信号通路。人们已经知道自噬与肿瘤发生等疾病密切相关,但对于自噬的分子机制仍然不是很清楚。鉴定更多的自噬相关蛋白对于进一步阐明自噬的分子机制具有重要意义。该研究使用饥饿法处理HeLa细胞,通过电镜观察以及检测自噬标记蛋白LC3-I的转换,证实HeLa细胞发生了明显的自噬。之后,使用双向电泳结合串联质谱分析鉴定细胞自噬时发生变化的蛋白质。结果发现果糖二磷酸醛缩酶A、GAPDH和ATP合成酶O亚基的量在HeLa细胞发生自噬后明显降低。实时定量PCR结果证明饥饿诱导后,这三种蛋白的mRNA水平都发生了明显的下降。使用自噬抑制剂3-Methyladenine预处理HeLa细胞后再行饥饿,三种蛋白mRNA的表达水平与正常细胞相当而明显高于饥饿诱导的细胞。结果表明这三种蛋白在饥饿诱导的自噬中表达下调,其分子机制还有待进一步研究。  相似文献   

3.
Lonial S  Boise LH 《Autophagy》2011,7(4):448-449
The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their 'proteotoxicity' allowing these toxic proteins to be sequestered away from normal cellular machinery.  相似文献   

4.
《Autophagy》2013,9(4):302-304
Autophagy is an intracellular bulk degradation process, through which a portion of cytoplasm is delivered to lysosomes to be degraded. In many organisms, the primary role of autophagy is adaptation to starvation. However, we have found that autophagy is also important for intracellular protein quality control. Atg5-/- mice die shortly after birth due, at least in part, to nutrient deficiency. These mice also exhibit an intracellular accumulation of protein aggregates in neurons and hepatocytes. We now report the generation of neural cell-specific Atg5-deficient mice. Atg5flox/flox;Nestin-Cre mice show progressive deficits in motor function and degeneration of some neural cells. In autophagy-deficient cells, diffuse accumulation of abnormal proteins occurs, followed by the generation of aggregates and inclusions. This study emphasizes the point that basal autophagy is important even in individuals who do not express neurodegenerative disease-associated mutant proteins. Furthermore, the primary targets of autophagy are diffuse cytosolic proteins, not protein aggregates themselves.  相似文献   

5.
Yuan J 《Autophagy》2008,4(2):249-250
An important role of autophagy in the clearance of misfolded proteins in neurons has been demonstrated. The challenge now is to see if we can develop small molecules that can induce autophagy without causing cellular damage.  相似文献   

6.
Mizushima N  Hara T 《Autophagy》2006,2(4):302-304
Autophagy is an intracellular bulk degradation process, through which a portion of cytoplasm is delivered to lysosomes to be degraded. In many organisms, the primary role of autophagy is adaptation to starvation. However, we have found that autophagy is also important for intracellular protein quality control. Atg5(-/-) mice die shortly after birth due, at least in part, to nutrient deficiency. These mice also exhibit an intracellular accumulation of protein aggregates in neurons and hepatocytes. We now report the generation of neural cell-specific Atg5-deficient mice. Atg5( flox/flox);Nestin-Cre mice show progressive deficits in motor function and degeneration of some neural cells. In autophagy-deficient cells, diffuse accumulation of abnormal proteins occurs, followed by the generation of aggregates and inclusions. This study emphasizes the point that basal autophagy is important even in individuals who do not express neurodegenerative disease-associated mutant proteins. Furthermore, the primary targets of autophagy are diffuse cytosolic proteins, not protein aggregates themselves.  相似文献   

7.
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.  相似文献   

8.
《Autophagy》2013,9(4):448-449
The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their ‘proteotoxicity’ allowing these toxic proteins to be sequestered away from normal cellular machinery.  相似文献   

9.
自噬是一个通过降解细胞组分如细胞器和蛋白质等以维持细胞存活和功能的重要的溶酶体途径。肝脏作为新陈代谢的中枢器官,肝脏高度依赖于自噬以发挥正常功能并防止疾病发展。肝细胞自噬的改变参与肝损伤,脂肪肝等肝病的病理变化,以自噬为靶点寻求治疗各种肝病的方法已成为热点研究领域,但自噬在肝脏蛋白质和脂质代谢中的作用极其机制尚不清楚。本文对自噬在肝脏蛋白质和脂质代谢中的作用的最新进展进行综述。  相似文献   

10.
Yu-Yun Chang 《FEBS letters》2010,584(7):1342-1349
Drosophila has been shown to be a powerful model to study autophagy, whose regulation involves a core machinery consisting of Atg proteins and upstream signaling regulators similar to those in yeast and mammals. The conserved role in degrading proteins and organelles gives autophagy an important function in coordinating several cellular processes as well as in a number of pathological conditions. This review summarizes key studies in Drosophila autophagy research and discusses potential questions that may lead to better understanding of the roles and regulation of autophagy in higher eukaryotes.  相似文献   

11.
Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway. Cigarette smoke (CS)-mediated oxidative stress induces cytotoxic responses in lung cells. However, the role of autophagy and its mechanism in CS-mediated cytotoxic responses is not known. We hypothesized that NAD+-dependent deacetylase, sirtuin 1 (SIRT1) plays an important role in regulating autophagy in response to CS. CS exposure resulted in induction of autophagy in lung epithelial cells, fibroblasts and macrophages. Pretreatment of cells with SIRT1 activator resveratrol attenuated CS-induced autophagy whereas SIRT1 inhibitor, sirtinol, augmented CS-induced autophagy. Elevated levels of autophagy were induced by CS in the lungs of SIRT1 deficient mice. Inhibition of poly(ADP-ribose)-polymerase-1 (PARP-1) attenuated CS-induced autophagy via SIRT1 activation. These data suggest that the SIRT1-PARP-1 axis plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence.  相似文献   

12.
Autophagy and apoptosis: where do they meet?   总被引:2,自引:0,他引:2  
Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1’s interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.  相似文献   

13.
Intrinsically disordered regions in autophagy proteins   总被引:1,自引:0,他引:1  
Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein–protein interactions, and delineate the network of proteins that interact with each predicted IDR‐containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α‐helix upon binding to BCL2s, with the C‐terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in‐depth investigations of the biological role and mechanism of IDRs in autophagy proteins. Proteins 2014; 82:565–578. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
《Autophagy》2013,9(12):1955-1964
Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1. We conclude that TRAF6-mediated ubiquitination of the midbody ring is important for its subsequent recognition by ubiquitin-binding autophagy receptors and degradation by selective autophagy.  相似文献   

15.
Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or grain-filling within a plant. We extended our understanding of autophagy in a model plant, Arabidopsis thaliana, to an important cereal, rice (Oryza sativa). Through analysis of transgenic rice plants stably expressing fluorescent marker proteins for autophagy or chloroplast stroma, we revealed that chloroplast proteins are partially degraded in the vacuole via Rubisco-containing bodies (RCBs), a type of autophagosomes containing stroma. We further reported evidence that the RCB pathway functions during natural leaf senescence to facilitate subsequent nitrogen remobilization into newly expanding leaves. Thus, our recent studies establish the importance of autophagy in biomass production of cereals.  相似文献   

16.
Kang R  Livesey KM  Zeh HJ  Lotze MT  Tang D 《Autophagy》2011,7(10):1256-1258
Autophagy is a dynamic process for degradation of cytosolic components such as dysfunctional organelles and proteins and a means for generating metabolic substrates during periods of starvation. Mitochondrial autophagy ("mitophagy") is a selective form of autophagy, which is important in maintaining mitochondrial homeostasis. High mobility group box 1 (HMGB1) plays important intranuclear, cytosolic and extracellular roles in the regulation of autophagy. Cytoplasmic HMGB1 is a novel Beclin 1-binding protein active in autophagy. Extracellular HMGB1 induces autophagy, and this role is dependent on its redox state and receptor (Receptor for Advanced Glycation End products, RAGE) expression. Nuclear HMGB1 modulates the expression of heat shock protein β-1 (HSPB1/HSP27). As a cytoskeleton regulator, HSPB1 is critical for dynamic intracellular trafficking during autophagy and mitophagy. Loss of either HMGB1 or HSPB1 results in a phenotypically similar deficiency in mitophagy typified by mitochondrial fragmentation with decreased aerobic respiration and adenosine triphosphate (ATP) production. These findings reveal a novel pathway coupling autophagy and cellular energy metabolism.  相似文献   

17.
Autophagy is one of the cellular adaptive processes that provide protection against many pathological conditions like infection, cancer, neurodegeneration, and aging. Recent evidences suggest that ubiquitination plays an important role in degradation of proteins or defective organelle either through proteasome or autophagy. In this study, we describe the role of TRIM13, ER resident ubiquitin E3 ligase in induction of autophagy and its role during ER stress. The ectopic expression of TRIM13 in HEK-293 cells induces autophagy. Domain mapping showed that coiled-coil (CC) domain is required for induction of autophagy. TRIM13 is stabilized during ER stress, interacts with p62/SQSTM1 and co-localizes with DFCP1. TRIM13 regulates initiation of autophagy during ER stress and decreases the clonogenic ability of the cells. This study for the first time demonstrates the role of TRIM13 in induction of autophagy which may play an important role in regulation of ER stress and may act as tumor suppressor.  相似文献   

18.
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3‐associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3‐associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre‐initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post‐mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.  相似文献   

19.
《Autophagy》2013,9(1):60-74
Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as surrogates for intracellular autophagy dynamics in tumor cells.  相似文献   

20.
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resulting in increased extracellular virus production. Moreover, expression of CA16 nonstructural proteins 2C and 3C was sufficient to trigger autophagosome accumulation by blocking the fusion of autophagosomes with lysosomes. Interestingly, we found that Immunity-related GTPase family M (IRGM) was crucial for the activation of CA16 infection-induced autophagy; in turn, reducing IRGM expression suppressed autophagy. Expression of viral protein 2C enhanced IRGM promoter activation, thereby increasing IRGM expression and inducing autophagy. CA16 infection inhibited Akt/mTOR signaling and activated extracellular signal-regulated kinase (ERK) signaling, both of which are necessary for autophagy induction. In summary, CA16 can use autophagy to enhance its own replication. These results raise the possibility of targeting the autophagic pathway for the treatment of hand, foot, and mouth disease (HFMD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号