首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Metagenomics is an emerging field in which the power of genomic analysis is applied to an entire microbial community, bypassing the need to isolate and culture individual microbial species. Assembling of metagenomic DNA fragments is very much like the overlap-layout-consensus procedure for assembling isolated genomes, but is augmented by an additional binning step to differentiate scaffolds, contigs and unassembled reads into various taxonomic groups. In this paper, we employed n-mer oligonucleotide frequencies as the features and developed a hierarchical classifier (PCAHIER) for binning short (≤ 1,000 bps) metagenomic fragments. The principal component analysis was used to reduce the high dimensionality of the feature space. The hierarchical classifier consists of four layers of local classifiers that are implemented based on the linear discriminant analysis. These local classifiers are responsible for binning prokaryotic DNA fragments into superkingdoms, of the same superkingdom into phyla, of the same phylum into genera, and of the same genus into species, respectively. We evaluated the performance of the PCAHIER by using our own simulated data sets as well as the widely used simHC synthetic metagenome data set from the IMG/M system. The effectiveness of the PCAHIER was demonstrated through comparisons against a non-hierarchical classifier, and two existing binning algorithms (TETRA and Phylopythia).  相似文献   

2.
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.  相似文献   

3.
Taxonomic assignment of sequence reads is a challenging task in metagenomic data analysis, for which the present methods mainly use either composition- or homology-based approaches. Though the homology-based methods are more sensitive and accurate, they suffer primarily due to the time needed to generate the Blast alignments. We developed the MetaBin program and web server for better homology-based taxonomic assignments using an ORF-based approach. By implementing Blat as the faster alignment method in place of Blastx, the analysis time has been reduced by severalfold. It is benchmarked using both simulated and real metagenomic datasets, and can be used for both single and paired-end sequence reads of varying lengths (≥45 bp). To our knowledge, MetaBin is the only available program that can be used for the taxonomic binning of short reads (<100 bp) with high accuracy and high sensitivity using a homology-based approach. The MetaBin web server can be used to carry out the taxonomic analysis, by either submitting reads or Blastx output. It provides several options including construction of taxonomic trees, creation of a composition chart, functional analysis using COGs, and comparative analysis of multiple metagenomic datasets. MetaBin web server and a standalone version for high-throughput analysis are available freely at http://metabin.riken.jp/.  相似文献   

4.
Metagenomics has transformed our understanding of the microbial world, allowing researchers to bypass the need to isolate and culture individual taxa and to directly characterize both the taxonomic and gene compositions of environmental samples. However, associating the genes found in a metagenomic sample with the specific taxa of origin remains a critical challenge. Existing binning methods, based on nucleotide composition or alignment to reference genomes allow only a coarse-grained classification and rely heavily on the availability of sequenced genomes from closely related taxa. Here, we introduce a novel computational framework, integrating variation in gene abundances across multiple samples with taxonomic abundance data to deconvolve metagenomic samples into taxa-specific gene profiles and to reconstruct the genomic content of community members. This assembly-free method is not bounded by various factors limiting previously described methods of metagenomic binning or metagenomic assembly and represents a fundamentally different approach to metagenomic-based genome reconstruction. An implementation of this framework is available at http://elbo.gs.washington.edu/software.html. We first describe the mathematical foundations of our framework and discuss considerations for implementing its various components. We demonstrate the ability of this framework to accurately deconvolve a set of metagenomic samples and to recover the gene content of individual taxa using synthetic metagenomic samples. We specifically characterize determinants of prediction accuracy and examine the impact of annotation errors on the reconstructed genomes. We finally apply metagenomic deconvolution to samples from the Human Microbiome Project, successfully reconstructing genus-level genomic content of various microbial genera, based solely on variation in gene count. These reconstructed genera are shown to correctly capture genus-specific properties. With the accumulation of metagenomic data, this deconvolution framework provides an essential tool for characterizing microbial taxa never before seen, laying the foundation for addressing fundamental questions concerning the taxa comprising diverse microbial communities.  相似文献   

5.
Given the absence of universal marker genes in the viral kingdom, researchers typically use BLAST (with stringent E-values) for taxonomic classification of viral metagenomic sequences. Since majority of metagenomic sequences originate from hitherto unknown viral groups, using stringent e-values results in most sequences remaining unclassified. Furthermore, using less stringent e-values results in a high number of incorrect taxonomic assignments. The SOrt-ITEMS algorithm provides an approach to address the above issues. Based on alignment parameters, SOrt-ITEMS follows an elaborate work-flow for assigning reads originating from hitherto unknown archaeal/bacterial genomes. In SOrt-ITEMS, alignment parameter thresholds were generated by observing patterns of sequence divergence within and across various taxonomic groups belonging to bacterial and archaeal kingdoms. However, many taxonomic groups within the viral kingdom lack a typical Linnean-like taxonomic hierarchy. In this paper, we present ProViDE (Program for Viral Diversity Estimation), an algorithm that uses a customized set of alignment parameter thresholds, specifically suited for viral metagenomic sequences. These thresholds capture the pattern of sequence divergence and the non-uniform taxonomic hierarchy observed within/across various taxonomic groups of the viral kingdom. Validation results indicate that the percentage of 'correct' assignments by ProViDE is around 1.7 to 3 times higher than that by the widely used similarity based method MEGAN. The misclassification rate of ProViDE is around 3 to 19% (as compared to 5 to 42% by MEGAN) indicating significantly better assignment accuracy. ProViDE software and a supplementary file (containing supplementary figures and tables referred to in this article) is available for download from http://metagenomics.atc.tcs.com/binning/ProViDE/  相似文献   

6.
An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis.  相似文献   

7.
Accurate phylogenetic classification of variable-length DNA fragments   总被引:1,自引:0,他引:1  
Metagenome studies have retrieved vast amounts of sequence data from a variety of environments leading to new discoveries and insights into the uncultured microbial world. Except for very simple communities, the encountered diversity has made fragment assembly and the subsequent analysis a challenging problem. A taxonomic characterization of metagenomic fragments is required for a deeper understanding of shotgun-sequenced microbial communities, but success has mostly been limited to sequences containing phylogenetic marker genes. Here we present PhyloPythia, a composition-based classifier that combines higher-level generic clades from a set of 340 completed genomes with sample-derived population models. Extensive analyses on synthetic and real metagenome data sets showed that PhyloPythia allows the accurate classification of most sequence fragments across all considered taxonomic ranks, even for unknown organisms. The method requires no more than 100 kb of training sequence for the creation of accurate models of sample-specific populations and can assign fragments >or=1 kb with high specificity.  相似文献   

8.
The availability of metagenomic sequencing data, generated by sequencing DNA pooled from multiple microbes living jointly, has increased sharply in the last few years with developments in sequencing technology. Characterizing the contents of metagenomic samples is a challenging task, which has been extensively attempted by both supervised and unsupervised techniques, each with its own limitations. Common to practically all the methods is the processing of single samples only; when multiple samples are sequenced, each is analyzed separately and the results are combined. In this paper we propose to perform a combined analysis of a set of samples in order to obtain a better characterization of each of the samples, and provide two applications of this principle. First, we use an unsupervised probabilistic mixture model to infer hidden components shared across metagenomic samples. We incorporate the model in a novel framework for studying association of microbial sequence elements with phenotypes, analogous to the genome-wide association studies performed on human genomes: We demonstrate that stratification may result in false discoveries of such associations, and that the components inferred by the model can be used to correct for this stratification. Second, we propose a novel read clustering (also termed "binning") algorithm which operates on multiple samples simultaneously, leveraging on the assumption that the different samples contain the same microbial species, possibly in different proportions. We show that integrating information across multiple samples yields more precise binning on each of the samples. Moreover, for both applications we demonstrate that given a fixed depth of coverage, the average per-sample performance generally increases with the number of sequenced samples as long as the per-sample coverage is high enough.  相似文献   

9.
Current metagenomic tools allow the recovery of microbial genomes directly from the environment. This can be accomplished by binning metagenomic contigs according to their coverage and tetranucleotide frequency, followed by an estimation of the bin quality. The public availability of bioinformatics tools, together with the decreasing cost of next generation sequencing, are democratizing this powerful approach that is spreading from specialized research groups to the general public. Using metagenomes from hypersaline environments, as well as mock metagenomes composed of Archaea and Bacteria frequently found in these systems, we have analyzed the advantages and difficulties of the binning process in these extreme environments to tackle microbial population diversity. These extreme systems harbor relatively low species diversity but high intraspecific diversity, which can compromise metagenome assembly and therefore the whole binning process. The main goal is to compare the output of the binning process with what is previously known from the analyzed samples, based on years of study using different approaches. Several scenarios have been analyzed in detail: (i) a good quality bin from a species highly abundant in the environment; (ii) an intermediate quality bin with incongruences that can be solved by further analyses and manual curation, and (iii) a low-quality bin to investigate the failure to recover a very abundant microbial genome as well as some possible solutions. The latter can be considered the “great metagenomics anomaly” and is mainly due to assembly problems derived from the microdiversity of naturally co-existing populations in nature.  相似文献   

10.

Background

DNA word frequencies, normalized for genomic AT content, are remarkably stable within prokaryotic genomes and are therefore said to reflect a “genomic signature.” The genomic signatures can be used to phylogenetically classify organisms from arbitrary sampled DNA. Genomic signatures can also be used to search for horizontally transferred DNA or DNA regions subjected to special selection forces. Thus, the stability of the genomic signature can be used as a measure of genomic homogeneity. The factors associated with the stability of the genomic signatures are not known, and this motivated us to investigate further. We analyzed the intra-genomic variance of genomic signatures based on AT content normalization (0th order Markov model) as well as genomic signatures normalized by smaller DNA words (1st and 2nd order Markov models) for 636 sequenced prokaryotic genomes. Regression models were fitted, with intra-genomic signature variance as the response variable, to a set of factors representing genomic properties such as genomic AT content, genome size, habitat, phylum, oxygen requirement, optimal growth temperature and oligonucleotide usage variance (OUV, a measure of oligonucleotide usage bias), measured as the variance between genomic tetranucleotide frequencies and Markov chain approximated tetranucleotide frequencies, as predictors.

Principal Findings

Regression analysis revealed that OUV was the most important factor (p<0.001) determining intra-genomic homogeneity as measured using genomic signatures. This means that the less random the oligonucleotide usage is in the sense of higher OUV, the more homogeneous the genome is in terms of the genomic signature. The other factors influencing variance in the genomic signature (p<0.001) were genomic AT content, phylum and oxygen requirement.

Conclusions

Genomic homogeneity in prokaryotes is intimately linked to genomic GC content, oligonucleotide usage bias (OUV) and aerobiosis, while oligonucleotide usage bias (OUV) is associated with genomic GC content, aerobiosis and habitat.  相似文献   

11.

Background  

Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies.  相似文献   

12.
Microbial fingerprinting techniques permit the rapid visualization of entire assemblages in single assays, allowing direct comparison of communities in different samples, where the null hypothesis of such analyses is that all samples are the same. The comparison of fingerprints relies upon the precise estimation of all amplified DNA fragment lengths, which correspond to operational taxonomic units (OTU; analogous, but not equal to, a taxon in macroorganism studies). However, computer interpolation of size standards (and consequently OTU size calling) can be imprecise between gel runs, which can lead to imprecise calculation of similarity indices between multiple assemblages. To account for OTU size calling imprecision, all fragments within a range of sizes (a window) can be combined (i.e., “binned”) where the window is as wide as the imprecision of OTU size calling. However, artifacts may occur upon binning samples that may cause samples to appear less similar to each other, caused by splitting of OTU between adjacent bin windows. In this work we present an improved binning technique that accounts for OTU size calling imprecision in the comparison of multiple fingerprints. This technique comprises binning all pairwise comparisons in multiple bin window frames, where the starting size of the window (i.e., frame) is shifted by +1 bp for a total of x frames, where x bp is the width of the maximum bin window size in any binning scheme. Pairwise similarity indices between different community fingerprints are calculated for each of the x frames. To best address the null hypothesis of the community comparison, the maximum similarity value of all x frames is then used in downstream analyses to compare the communities. We believe this binning technique provides the most accurate and least biased comparison between different microbial fingerprints.  相似文献   

13.
姜忠俊  李小波 《微生物学报》2022,62(8):2954-2968
宏基因组学技术可以直接从环境中提取微生物的全部遗传物质,而不需要像传统方法一样在培养基上纯培养。这种技术的出现为科学家对微生物群落的结构和功能的认识提供了重要的方法,同时对疾病的诊治、环境的治理以及生命的认识具有重大的意义。从环境中提取出微生物全部遗传物质,对其进行测序从而得到它们的reads片段,通过reads组装工具可以进一步组装成重叠群片段。对重叠群片段进行分箱,可以从宏基因组样本中重建出更多完整的基因。分箱效果的好坏直接影响到后续的生物分析,因此如何将这些含有不同微生物基因混合的重叠群序列进行有效的分箱成为了宏基因组学研究的热点和难点。机器学习方法被广泛应用于宏基因组重叠群分箱,通常分为有监督重叠群分类方法和无监督重叠群聚类方法。该综述针对宏基因组重叠群分箱方法进行了较为全面的阐述,深入剖析了重叠群分类方法与聚类方法,发现其存在分类准确率较低、分箱时间较长、难以从复杂数据集中重建更多微生物基因等问题,并对未来重叠群分箱方法的研究和发展进行了展望。作者建议可以使用半监督学习、集成学习以及深度学习方法,并采用更有效的数据特征表示等途径来提高分箱效果。  相似文献   

14.
Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.  相似文献   

15.
The vast majority of microbes are unculturable and thus cannot be sequenced by means of traditional methods. High-throughput sequencing techniques like 454 or Solexa-Illumina make it possible to explore those microbes by studying whole natural microbial communities and analysing their biological diversity as well as the underlying metabolic pathways. Over the past few years, different methods have been developed for the taxonomic and functional characterization of metagenomic shotgun sequences. However, the taxonomic classification of metagenomic sequences from novel species without close homologue in the biological sequence databases poses a challenge due to the high number of wrong taxonomic predictions on lower taxonomic ranks. Here we present CARMA3, a new method for the taxonomic classification of assembled and unassembled metagenomic sequences that has been adapted to work with both BLAST and HMMER3 homology searches. We show that our method makes fewer wrong taxonomic predictions (at the same sensitivity) than other BLAST-based methods. CARMA3 is freely accessible via the web application WebCARMA from http://webcarma.cebitec.uni-bielefeld.de.  相似文献   

16.
17.
Reddy RM  Mohammed MH  Mande SS 《Gene》2012,505(2):259-265
Phylogenetic assignment of individual sequence reads to their respective taxa, referred to as 'taxonomic binning', constitutes a key step of metagenomic analysis. Existing binning methods have limitations either with respect to time or accuracy/specificity of binning. Given these limitations, development of a method that can bin vast amounts of metagenomic sequence data in a rapid, efficient and computationally inexpensive manner can profoundly influence metagenomic analysis in computational resource poor settings. We introduce TWARIT, a hybrid binning algorithm, that employs a combination of short-read alignment and composition-based signature sorting approaches to achieve rapid binning rates without compromising on binning accuracy and specificity. TWARIT is validated with simulated and real-world metagenomes and the results demonstrate significantly lower overall binning times compared to that of existing methods. Furthermore, the binning accuracy and specificity of TWARIT are observed to be comparable/superior to them. A web server implementing TWARIT algorithm is available at http://metagenomics.atc.tcs.com/Twarit/  相似文献   

18.
A basic problem of the metagenomic approach in microbial ecology is the assignment of genomic fragments to a certain species or taxonomic group, when suitable marker genes are absent. Currently, the (G + C)-content together with phylogenetic information and codon adaptation for functional genes is mostly used to assess the relationship of different fragments. These methods, however, can produce ambiguous results. In order to evaluate sequence-based methods for fragment identification, we extensively compared (G + C)-contents and tetranucleotide usage patterns of 9054 fosmid-sized genomic fragments generated in silico from 118 completely sequenced bacterial genomes (40 982 931 fragment pairs were compared in total). The results of this systematic study show that the discriminatory power of correlations of tetranucleotide-derived z-scores is by far superior to that of differences in (G + C)-content and provides reasonable assignment probabilities when applied to metagenome libraries of small diversity. Using six fully sequenced fosmid inserts from a metagenomic analysis of microbial consortia mediating the anaerobic oxidation of methane (AOM), we demonstrate that discrimination based on tetranucleotide-derived z-score correlations was consistent with corresponding data from 16S ribosomal RNA sequence analysis and allowed us to discriminate between fosmid inserts that were indistinguishable with respect to their (G + C)-contents.  相似文献   

19.
? The internal transcribed spacer (ITS) of the nuclear ribosomal DNA region is a widely used species marker for plants and fungi. Recent metagenomic studies using next-generation sequencing, however, generate only partial ITS sequences. Here we compare the performance of partial and full-length ITS sequences with several classification methods. ? We compiled a full-length ITS data set and created short fragments to simulate the read lengths commonly recovered from current next-generation sequencing platforms. We compared recovery, erroneous recovery, and coverage for the following methods: best BLAST hit classification, MEGAN classification, and automated phylogenetic assignment using the Statistical Assignment Program (SAP). ? We found that summarizing results with more inclusive taxonomic ranks increased recovery and reduced erroneous recovery. The similarity-based methods BLAST and MEGAN performed consistently across most fragment lengths. Using a phylogeny-based method, SAP runs with queries 400 bp or longer worked best. Overall, BLAST had the highest recovery rates and MEGAN had the lowest erroneous recovery rates. ? A high-throughput ITS classification method should be selected, taking into consideration read length, an acceptable tradeoff between maximizing the total number of classifications and minimizing the number of erroneous classifications, and the computational speed of the assignment method.  相似文献   

20.
Metagenomics is providing striking insights into the ecology of microbial communities. The recently developed massively parallel 454 pyrosequencing technique gives the opportunity to rapidly obtain metagenomic sequences at a low cost and without cloning bias. However, the phylogenetic analysis of the short reads produced represents a significant computational challenge. The phylogenetic algorithm CARMA for predicting the source organisms of environmental 454 reads is described. The algorithm searches for conserved Pfam domain and protein families in the unassembled reads of a sample. These gene fragments (environmental gene tags, EGTs), are classified into a higher-order taxonomy based on the reconstruction of a phylogenetic tree of each matching Pfam family. The method exhibits high accuracy for a wide range of taxonomic groups, and EGTs as short as 27 amino acids can be phylogenetically classified up to the rank of genus. The algorithm was applied in a comparative study of three aquatic microbial samples obtained by 454 pyrosequencing. Profound differences in the taxonomic composition of these samples could be clearly revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号