首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
2.
Nitrogen fixation by marine cyanobacteria   总被引:3,自引:0,他引:3  
Discrepancies between estimates of oceanic N(2) fixation and nitrogen (N) losses through denitrification have focused research on identifying N(2)-fixing cyanobacteria and quantifying cyanobacterial N(2) fixation. Previously unrecognized cultivated and uncultivated unicellular cyanobacteria have been discovered that are widely distributed, and some have very unusual properties. Uncultivated unicellular N(2)-fixing cyanobacteria (UCYN-A) lack major metabolic pathways including the tricarboxylic acid cycle and oxygen-evolving photosystem II. Genomes of the oceanic N(2)-fixing cyanobacteria are highly conserved at the DNA level, and genetic diversity is maintained by genome rearrangements. The major cyanobacterial groups have different physiological and ecological constraints that result in highly variable geographic distributions, with implications for the marine N-cycle budget.  相似文献   

3.
The tricarboxylic acid (TCA) cycle is one of the most important metabolic pathways in nature. Oxygenic photoautotrophic bacteria, cyanobacteria, have an unusual TCA cycle. The TCA cycle in cyanobacteria contains two unique enzymes that are not part of the TCA cycle in other organisms. In recent years, sustainable metabolite production from carbon dioxide using cyanobacteria has been looked at as a means to reduce the environmental burden of this gas. Among cyanobacteria, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) is an optimal host for sustainable metabolite production. Recently, metabolite production using the TCA cycle in Synechocystis 6803 has been carried out. Previous studies revealed that the branch point of the oxidative and reductive TCA cycles, oxaloacetate metabolism, plays a key role in metabolite production. However, the biochemical mechanisms regulating oxaloacetate metabolism in Synechocystis 6803 are poorly understood. Concentrations of oxaloacetate in Synechocystis 6803 are extremely low, such that in vivo analysis of oxaloacetate metabolism does not seem realistic. Therefore, using purified enzymes, we reconstituted oxaloacetate metabolism in Synechocystis 6803 in vitro to reveal the regulatory mechanisms involved. Reconstitution of oxaloacetate metabolism revealed that pH, Mg2+ and phosphoenolpyruvate are important factors affecting the conversion of oxaloacetate in the TCA cycle. Biochemical analyses of the enzymes involved in oxaloacetate metabolism in this and previous studies revealed the biochemical mechanisms underlying the effects of these factors on oxaloacetate conversion. In addition, we clarified the function of two l- malate dehydrogenase isozymes in oxaloacetate metabolism. These findings serve as a basis for various applications of the cyanobacterial TCA cycle.  相似文献   

4.
5.
Modern conical microbialites are similar to some ancient conical stromatolites, but growth, behavior and diversity of cyanobacteria in modern conical microbialites remain poorly characterized. Here, we analyze the diversity of cyanobacterial 16S rRNA gene sequences in conical microbialites from 14 ponds fed by four thermal sources in Yellowstone National Park and compare cyanobacterial activity in the tips of cones and in the surrounding topographic lows (mats), respectively, by high‐resolution mapping of labeled carbon. Cones and adjacent mats contain similar 16S rRNA gene sequences from genetically distinct clusters of filamentous, non‐heterocystous cyanobacteria from Subsection III and unicellular cyanobacteria from Subsection I. These sequences vary among different ponds and between two sampling years, suggesting that coniform mats through time and space contain a number of cyanobacteria capable of vertical aggregation, filamentous cyanobacteria incapable of initiating cone formation and unicellular cyanobacteria. Unicellular cyanobacteria are more diverse in topographic lows, where some of these organisms respond to nutrient pulses more rapidly than thin filamentous cyanobacteria. The densest active cyanobacteria are found below the upper 50 μm of the cone tip, whereas cyanobacterial cells in mats are less dense, and are more commonly degraded or encrusted by silica. These spatial differences in cellular activity and density within macroscopic coniform mats imply a strong role for diffusion limitation in the development and the persistence of the conical shape. Similar mechanisms may have controlled the growth, morphology and persistence of small coniform stromatolites in shallow, quiet environments throughout geologic history.  相似文献   

6.
RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease—the polynucleotide phosphorylase (PNPase)—in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms.  相似文献   

7.
The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism.  相似文献   

8.
Cyanobacteria and diatom mats are ubiquitous in hypersaline environments but have never been observed in the Dead Sea, one of the most hypersaline lakes on Earth. Here we report the discovery of phototrophic microbial mats at underwater freshwater seeps in the Dead Sea. These mats are either dominated by diatoms or unicellular cyanobacteria and are spatially separated. Using in situ and ex situ O2 microsensor measurements we show that these organisms are photosynthetically active in their natural habitat. The diatoms, which are phylogenetically associated to the Navicula genus, grew in culture at salinities up to 40 % Dead Sea water (DSW) (14 % total dissolved salts, TDS). The unicellular cyanobacteria belong to the extremely halotolerant Euhalothece genus and grew at salinities up to 70 % DSW (24.5 % TDS). As suggested by a variable O2 penetration depth measured in situ, the organisms are exposed to drastic salinity fluctuations ranging from brackish to DSW salinity within minutes to hours. We could demonstrate that both phototrophs are able to withstand such extreme short-term fluctuations. Nevertheless, while the diatoms recover better from rapid fluctuations, the cyanobacteria cope better with long-term exposure to DSW. We conclude that the main reason for the development of these microbial mats is a local dilution of the hypersaline Dead Sea to levels allowing growth. Their spatial distribution in the seeping areas is a result of different recovery rates from short or long-term fluctuation in salinity.  相似文献   

9.
A PCR was developed for conserved regions within the cyanobacterial small subunit uptake hydrogenase (hupS) gene family. These primers were used to PCR amplify partial hupS sequences from 15 cyanobacterial strains. HupS clone libraries were constructed from PCR-amplified genomic DNA and reverse-transcribed mRNA extracted from phototrophic biofilms cultivated under nitrate-limiting conditions. Partial hupS gene sequences derived from cyanobacteria, some of which were not previously known to contain hup genes were used for phylogenetic analysis. Phylogenetic trees constructed with partial hupS genes were congruent with those based on 16S rRNA genes, indicating that hupS sequences can be used to identify cyanobacteria expressing hup. Sequences from heterocystous and nonheterocystous cyanobacteria formed two separate clusters. Analysis of clone library data showed a discrepancy between the presence and the activity of cyanobacterial hupS genes in phototrophic biofilms. The results showed that the hupS gene can be used to characterize the diversity of natural populations of diazotrophic cyanobacteria, and to characterize gene expression patterns of individual species and strains.  相似文献   

10.
To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3°N and 56.6 to 18.5°W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as γ-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and γ-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30°C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30°C, more often in waters with temperature of <26°C, and were sometimes recovered from waters with detectable nitrate concentrations.  相似文献   

11.
As important oxygenic photoautotrophs, cyanobacteria are also generally considered as one of the most promising microbial chassis for photosynthetic biomanufacturing. Diverse synthetic biology and metabolic engineering approaches have been developed to enable the efficient harnessing of carbon and energy flow toward the synthesis of desired metabolites in cyanobacterial cell factories. Glycogen metabolism works as the most important natural carbon sink mechanism and reserve carbon source, storing a large portion of carbon and energy from the Calvin-Benson-Bassham (CBB) cycle, and thus is traditionally recognized as a promising engineering target to optimize the efficacy of cyanobacterial cell factories. Multiple strategies and approaches have been designed and adopted to engineer glycogen metabolism in cyanobacteria, leading to the successful regulation of glycogen synthesis and storage contents in cyanobacteria cells. However, disturbed glycogen metabolism results in weakened cellular physiological functionalities, thereby diminishing the robustness of metabolism. In addition, the effects of glycogen removal as a metabolic engineering strategy to enhance photosynthetic biosynthesis are still controversial. This review focuses on the efforts and effects of glycogen metabolism engineering on the physiology and metabolism of cyanobacterial chassis strains and cell factories. The perspectives and prospects provided herein are expected to inspire novel strategies and tools to achieve ideal control over carbon and energy flow for biomanufacturing.  相似文献   

12.
Cyanobacterial biofertilizers in rice agriculture   总被引:1,自引:0,他引:1  
Floodwater and the surface of soil provide the sites for aerobic phototrophic nitrogen (N) fixation by free-living cyanobacteria and theAzolla-Anabaena symbiotic N2-fixing complex. Free-living cyanobacteria, the majority of which are heterocystous and nitrogen fixing, contribute an average of 20–30 kg N ha-1, whereas the value is up to 600 kg ha-1 for theAzollaAnabaena system (the most beneficial cyanobacterial symbiosis from an agronomic point of view). Synthesis and excretion of organic/growth-promoting substances by the cyanobacteria are also on record. During the last two or three decades a large number of studies have been published on the various important fundamental and applied aspects of both kinds of cyanobacterial biofertilizers (the free-living cyanobacteria and the cyanobacteriumAnabaena azollae in symbiotic association with the water fernAzolla), which include strain identification, isolation, purification, and culture; laboratory analyses of their N2-fixing activity and related physiology, biochemistry, and energetics; and identification of the structure and regulation of nitrogenfixing (nif) genes and nitrogenase enzyme. The symbiotic biology of theAzolla-Anabaena mutualistic N2-fixing complex has been clarified. In free-living cyanobacterial strains, improvement through mutagenesis with respect to constitutive N2 fixation and resistance to the noncongenial agronomic factors has been achieved. By preliminary meristem mutagenesis inAzolla, reduced phosphate dependence was achieved, as were temperature tolerance and significant sporulation/spore germination under controlled conditions. Mass-production biofertilizer technology of free-living and symbiotic (Azolla-Anabaena) cyanobacteria was studied, as were the interacting and agronomic effects of both kinds of cyanobacterial biofertilizer with rice, improving the economics of rice cultivation with the cyanobacterial biofertilizers. Recent results indicate a strong potential for cyanobacterial biofertilizer technology in rice-growing countries, which opens up a vast area of more concerted basic, applied, and extension work in the future to make these self-renewable natural nitrogen resources even more promising at the field level in order to help reduce the requirement for inorganic N to the bare minimum, if not to zero.  相似文献   

13.

Background

Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive.

Results

Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses.

Conclusion

We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.  相似文献   

14.
When isolating Photosystem 1 from the thylakoid membranes of cyanobacteria, a multiplicity of photosystem complexes can be encountered, which has not yet been observed in any other phototrophic organisms: After solubilisation of thylakoid membranes with detergents, trimeric, dimeric and monomeric forms of Photosystem 1 can be separated. The question must now be answered, which of the stable Photosystem 1 forms is the functional form in vivo-monomeric or trimeric? The two possibilities are discussed, though we mainly present arguments for the existence of the trimeric form of Photosystem 1 in cyanobacterial thylakoid membranes.  相似文献   

15.
We have tested a set of oligonucleotide primers originally developed for the specific amplification of 16S rRNA gene segments from cyanobacteria, in order to determine their versatility as an identification tool for phototrophic eucaryotes. Using web-based bioinformatics tools we determined that these primers not only targeted cyanobacterium sequences as previously described, but also 87% of sequences derived from phototrophic eucaryotes. In order to qualify our finding, a type culture and environmental strain from the freshwater unicellular, green algae genus Chlorella Beijerinck, were selected for further study. Subsequently, we sequenced a 578-bp fragment of the 16S rRNA gene, which proved to be present within the chloroplast genome, performed sequence analysis and positively identified our solvent-degrading environmental strain (SDC1) as Chlorella vulgaris.  相似文献   

16.
17.
Taxonomic classification is the only method for understanding and exploring knowledge about organismal diversity. However, it is complicated in prokaryotic, phylogenetically old, phototrophic cyanobacteria, which contain very simple unicellular forms up to multicellular types with a differentiated and diversified thallus. Their cells are cytologically relatively simple, but variable in shape. Various genotypes are adaptable to various specialized ecosystems. The introduction and combination of modern molecular, cytomorphological and ecological methods in the taxonomy of cyanobacteria is necessary and should be accepted as the only method for the elaboration of their modern systematics. The combination of different methods should be based on molecular sequencing as the basic approach, to which must be added other criteria (morphological, ecological) if they are available and which are distinct and recognizable in cyanobacterial populations. The use of such characteristics is necessary and must be obligatorily included for the final characterization both of strains and natural populations. Application of this polyphasic, i.e. combined approach is considered as a unique, modern, unambiguous, unequivocal and a fully acceptable methodological procedure, but it is not yet commonly used, nor possible for all known cyanobacterial populations. The main principles and recent problems of this modern classification method are discussed in the following review and will be the basis of further discussion.  相似文献   

18.
Certain cyanobacteria thrive in natural habitats in which light intensities can reach 2000 micromol photon m(-2) s(-1) and nutrient levels are extremely low. Recently, a family of genes designated hli was demonstrated to be important for survival of cyanobacteria during exposure to high light. In this study we have identified members of the hli gene family in seven cyanobacterial genomes, including those of a marine cyanobacterium adapted to high-light growth in surface waters of the open ocean (Prochlorococcus sp. strain Med4), three marine cyanobacteria adapted to growth in moderate- or low-light (Prochlorococcus sp. strain MIT9313, Prochlorococcus marinus SS120, and Synechococcus WH8102), and three freshwater strains (the unicellular Synechocystis sp. strain PCC6803 and the filamentous species Nostoc punctiforme strain ATCC29133 and Anabaena sp. [Nostoc] strain PCC7120). The high-light-adapted Prochlorococcus Med4 has the smallest genome (1.7 Mb), yet it has more than twice as many hli genes as any of the other six cyanobacterial species, some of which appear to have arisen from recent duplication events. Based on cluster analysis, some groups of hli genes appear to be specific to either marine or freshwater cyanobacteria. This information is discussed with respect to the role of hli genes in the acclimation of cyanobacteria to high light, and the possible relationships among members of this diverse gene family.  相似文献   

19.
Cyanobacteria hold promise for renewable chemical production due to their photosynthetic nature, but engineered strains frequently display poor production characteristics. These difficulties likely arise in part due to the distinctive photoautotrophic metabolism of cyanobacteria. In this work, we apply a genome-scale metabolic model of the cyanobacteria Synechococus sp. PCC 7002 to identify strain designs accounting for this unique metabolism that are predicted to improve the production of various biofuel alcohols (e.g. 2-methyl-1-butanol, isobutanol, and 1-butanol) synthesized via an engineered biosynthesis pathway. Using the model, we identify that the introduction of a large, non-native NADH-demand into PCC 7002's metabolic network is predicted to enhance production of these alcohols by promoting NADH-generating reactions upstream of the production pathways. To test this, we construct strains of PCC 7002 that utilize a heterologous, NADH-dependent nitrite reductase in place of the native, ferredoxin-dependent enzyme to create an NADH-demand in the cells when grown on nitrate-containing media. We find that photosynthetic production of both isobutanol and 2-methyl-1-butanol is significantly improved in the engineered strain background relative to that in a wild-type background. We additionally identify that the use of high-nutrient media leads to a substantial prolongment of the production curve in our alcohol production strains. The metabolic engineering strategy identified and tested in this work presents a novel approach to engineer cyanobacterial production strains that takes advantage of a unique aspect of their metabolism and serves as a basis on which to further develop strains with improved production of these alcohols and related products.  相似文献   

20.
Comparative growth and N2-fixation of cyanobacteria, namely Aphanothece sp. (unicellular) and Gloeotrichia sp. (heterocystous, filamentous), were studied after their inoculation to rice crop in the absence and presence of urea nitrogen fertilizer. In the absence of N-fertilizer application (control), inoculation of both cyanobacterial species showed significant increase in growth and acetylene reduction activity (ARA), but gradual reduction in these parameters was observed at 30 and 60 kg N ha?1 of urea application. In inoculation of Gloeotrichia sp. at control, 30 and 60 kg N ha?1 increased grain yield significantly over uninoculated control in both wet and dry seasons, but grain yield with Aphanothece sp. inoculation was statistically similar to the control at N levels during both seasons. The inoculation study showed that heterocystous cyanobacteria contributed better than unicellular ones, and application of N-fertilizer adversely affected both growth and N2-fixation of native as well of inoculated cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号