首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown marmorated stink bug, Halyomorpha halys (Stål), (Hemiptera: Pentatomidae) is an invasive polyphagous agricultural and urban nuisance pest of Asian origin that is becoming widespread in North America and Europe. Despite the economic importance of pentatomid pests worldwide, their feeding behavior is poorly understood. Electronically monitored insect feeding (EMIF) technology is a useful tool in studies of feeding behavior of Hemiptera. Here we examined H. halys feeding behavior using an EMIF system designed for high throughput studies in environmental chambers. Our objectives were to quantify feeding activity by monitoring proboscis contacts with green beans, including labial dabbing and stylet penetration of the beans, which we collectively define as ‘probes’. We examined frequency and duration of ‘probes’ in field-collected H. halys over 48 hours and we determined how environmental conditions could affect diel and seasonal periodicity of ‘probing’ activity. We found differences in ‘probing’ activity between months when the assays were conducted. These differences in activity may have reflected different environmental conditions, and they also coincide with what is known about the phenology of H. halys. While a substantial number of ‘probes’ occurred during scotophase, including some of the longest mean ‘probe’ durations, activity was either lower or similar to ‘probing’ activity levels during photophase on average. We found that temperature had a significant impact on H. halys ‘probing’ behavior and may influence periodicity of activity. Our data suggest that the minimal temperature at which ‘probing’ of H. halys occurs is between 3.5 and 6.1°C (95% CI), and that ‘probing’ does not occur at temperatures above 26.5 to 29.6°C (95% CI). We estimated that the optimal temperature for ‘probing’ is between 16 and 17°C.  相似文献   

2.
Standard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population‐density variables of co‐located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi‐species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community''s constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co‐located species commonly show asymmetric tail associations; that is, it is common for two species’ densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co‐located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species’ population‐density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.  相似文献   

3.
In a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.Subject terms: Plant breeding, Forest ecology, Evolutionary genetics  相似文献   

4.
Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the ‘seasonally vector free period’: SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species-specific abundance during the start and end of seasonal activity in temperate regions to facilitate refinement of ruminant movement restrictions thereby reducing the impact of Culicoides-borne arboviruses.  相似文献   

5.
Many bird species reproduce earlier in years with high spring temperatures, but little is known about the causal effect of temperature. Temperature may have a direct effect on timing of reproduction but the correlation may also be indirect, for instance via food phenology. As climate change has led to substantial shifts in timing, it is essential to understand this causal relationship to predict future impacts of climate change. We tested the direct effect of temperature on laying dates in great tits (Parus major) using climatized aviaries in a 6-year experiment. We mimicked the temperature patterns from two specific years in which our wild population laid either early (‘warm’ treatment) or late (‘cold’ treatment). Laying dates were affected by temperature directly. As the relevant temperature period started three weeks prior to the mean laying date, with a range of just 4°C between the warm and the cold treatments, and as the birds were fed ad libitum, it is likely that temperature acted as a cue rather than lifting an energetic constraint on the onset of egg production. We furthermore show a high correlation between the laying dates of individuals reproducing both in aviaries and in the wild, validating investigations of reproduction of wild birds in captivity. Our results demonstrate that temperature has a direct effect on timing of breeding, an important step towards assessing the implication of climate change on seasonal timing.  相似文献   

6.
The influence of large‐scale variables such as climate change on phenology has received a great deal of research attention. However, local environmental factors also play a key role in determining the timing of species life cycles. Using the meadow brown butterfly Maniola jurtina as an example, we investigate how a specific habitat type, lowland calcareous grassland, can affect the timing of flight dates. Although protracted flight periods have previously been reported in populations on chalk grassland sites in the south of England, no attempt has yet been made to quantify this at a national level, or to assess links with population genetics and drought tolerance. Using data from 539 sites across the UK, these differences in phenology are quantified, and Mjurtina phenology is found to be strongly associated with both site geology and topography, independent of levels of abundance. Further investigation into aspects of Mjurtina ecology at a subset of sites finds no genetic structuring or drought tolerance associated with these same site conditions.  相似文献   

7.
Climate change can not only increase the exposure of organisms to higher temperatures but can also drive phenological shifts that alter their susceptibility to conditions at the onset of breeding cycles. Organisms rely on climatic cues to time annual life cycle events, but the extent to which climate change has altered cue reliability remains unclear. Here, we examined the risk of a “climate trap”—a climatically driven desynchronization of the cues that determine life cycle events and fitness later in the season in a temperate reptile, the European adder (Vipera berus). During the winter, adders hibernate underground, buffered against subzero temperatures, and re‐emerge in the spring to reproduce. We derived annual spring‐emergence trends between 1983 and 2017 from historical observations in Cornwall, UK, and related these trends to the microclimatic conditions that adders experienced. Using a mechanistic microclimate model, we computed below‐ and near‐ground temperatures to derive accumulated degree‐hour and absolute temperature thresholds that predicted annual spring‐emergence timing. Trends in annual‐emergence timing and subsequent exposure to ground frost were then quantified. We found that adders have advanced their phenology toward earlier emergence. Earlier emergence was associated with increased exposure to ground frost and, contradicting the expected effects of macroclimate warming, increased post‐emergence exposure to ground frost at some locations. The susceptibility of adders to this “climate trap” was related to the rate at which frost risk diminishes relative to advancement in phenology, which depends on the seasonality of climate. We emphasize the need to consider exposure to changing microclimatic conditions when forecasting biological impacts of climate change.  相似文献   

8.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

9.
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California’s White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.  相似文献   

10.
Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a ‘thermal delay’, thus possibly becoming increasingly mismatched to spring phenology. Species with greater ‘thermal delay’ have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.  相似文献   

11.
For multiple-brooded species, the number of reproductive events per year is a major determinant of an individual''s fitness. Where multiple brooding is facultative, its occurrence is likely to change with environmental conditions, and, as a consequence, the current rates of environmental change could have substantial impacts on breeding patterns. Here we examine temporal population-level trends in the proportion of female great tits (Parus major) producing two clutches per year (‘double brooding’) in four long-term study populations in The Netherlands, and show that the proportion of females that double brood has declined in all populations, with the strongest decline taking place in the last 30 years of the study. For one of the populations, for which we have data on caterpillar abundance, we show that the probability that a female produces a second clutch was related to the timing of her first clutch relative to the peak in caterpillar abundance, and that the probability of double brooding declined over the study period. We further show that the number of recruits from the second clutch decreased significantly over the period 1973–2004 in all populations. Our results indicate that adjustment to changing climatic conditions may involve shifts in life-history traits other than simply the timing of breeding.  相似文献   

12.
Fragmentation exposes plants to extreme environmental conditions with implications for species phenology and reproduction. We investigated whether isolation and edge effects influence size, flowering time, fruit set, and seedling establishment of Anadenanthera peregrina var. falcata. We compared trees in the interior (n?=?85), and on the edge (n?=?74) of a cerrado savanna fragment as well as in a pasture (n?=?26) with respect to size, flowering phenology, flower and fruit production, fruit and seed set, predispersal seed predation, and seedling establishment. Trees in the pasture were larger and produced a higher number of flowers and fruits than trees on the edge and interior, yet seed set did not differ across environments. The plant size structure explained the flower and fruit production, and the self-compatibility breeding system caused a similar seed set regardless of the environment. First flowering was later and fruit set higher in the interior. We argue that time of first flower influenced the fruit set of Anadenathera. Edge and isolated trees started to flower earlier as a response to microclimatic conditions—mainly temperature—reducing the fruit set. Predispersal seed predation was lower among pasture trees. Conversely, we found seedlings only on the edge and in the interior of cerrado, suggesting that the pasture was of poor quality habitat for Anadenanthera recruitment. Isolation affected the plant size structure and reproduction of Anadenanthera trees. Studies comparing plant phenology under contrasting environmental conditions may offer clues on how global change may affect plant reproduction in the tropics.  相似文献   

13.
Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real‐world ecosystems in a warming climate.  相似文献   

14.
Background and AimsFruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another.MethodsFor 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations.Key ResultsOn average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau’s peak fruiting dates; latest specimen dates were later than Thoreau’s last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69–0.88) and between (r: 0.59–0.85) datasets.ConclusionsStrong correlations in fruiting phenology between Thoreau’s observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.  相似文献   

15.
Annual variation in the environment is expected to influence individual performance, e.g. measured as body condition, such as body mass or fat deposition, through its direct or indirect effects on food abundance and availability. Such environmental variation is traditionally measured by climatic observation, but recently, measures of environmental phenology obtained from satellite images have been successfully used. We examined the performance of climatic and plant phenology variables in explaining body condition of an invasive omnivore species: the raccoon dog Nyctereutes procyonoides. We collected data on fat deposition of juveniles in southern Finland from the end of June to the beginning of November. A four-parametric logistic model was fitted separately for each province to the data by non-linear regression procedure and the residuals were compared to the expected average as measure of individual performance. These values were then analysed with respect to the environmental variables. Climatic variables describing spring conditions performed better than plant phenology variables in explaining the variation in fat deposition. Harsh spring conditions negatively affected the amount of fat deposed during the growing season. Plant phenology variables, effective in explaining life history traits in herbivores, might not reflect variation in food abundance and quality for omnivore species. We propose that in Europe raccoon dogs will benefit from climate warming, because of a longer growing season, but increased spring precipitation in the form of snow at higher latitudes might compensate for the effect of greater primary productivity and outline the border of their expansion towards harsher environments.  相似文献   

16.
The warming climate will expose alpine species adapted to a highly seasonal, harsh environment to novel environmental conditions. A species can shift their distribution, acclimate, or adapt in response to a new climate. Alpine species have little suitable habitat to shift their distribution, and the limits of acclimation will likely be tested by climate change in the long-term. Adaptive genetic variation may provide the raw material for species to adapt to this changing environment. Here, we use a genomic approach to describe adaptive divergence in an alpine-obligate species, the white-tailed ptarmigan (Lagopus leucura), a species distributed from Alaska to New Mexico, across an environmentally variable geographic range. Previous work has identified genetic structure and morphological, behavioral, and physiological differences across the species’ range; however, those studies were unable to determine the degree to which adaptive divergence is correlated with local variation in environmental conditions. We used a genome-wide dataset generated from 95 white-tailed ptarmigan distributed throughout the species’ range and genotype–environment association analyses to identify the genetic signature and environmental drivers of local adaptation. We detected associations between multiple environmental gradients and candidate adaptive loci, suggesting ptarmigan populations may be locally adapted to the plant community composition, elevation, local climate, and to the seasonality of the environment. Overall, our results suggest there may be groups within the species’ range with genetic variation that could be essential for adapting to a changing climate and helpful in guiding conservation action.Subject terms: Ecological genetics, Evolutionary ecology  相似文献   

17.
Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a novel structural feature of biological networks, termed ‘regulation entropy’, to quantitatively assess the influence of network topology on the robustness of the systems. Using the cell-cycle control networks of the budding yeast (Saccharomyces cerevisiae) and the fission yeast (Schizosaccharomyces pombe) as examples, we first demonstrate the correlation of this quantity with the dynamic stability of biological control networks, and then we establish a significant association between this quantity and the structural stability of the networks. And we further substantiate the generality of this approach with a broad spectrum of biological and random networks. We conclude that the regulation entropy is an effective order parameter in evaluating the robustness of biological control networks. Our work suggests a novel connection between the topological feature and the dynamic property of biological regulatory networks.  相似文献   

18.
19.
A central challenge of conservation biology is using limited data to predict rare species occurrence and identify conservation areas that play a disproportionate role in regional persistence. Where species occupy discrete patches in a landscape, such predictions require data about environmental quality of individual patches and the connectivity among high quality patches. We present a novel extension to species occupancy modeling that blends traditional predictions of individual patch environmental quality with network analysis to estimate connectivity characteristics using limited survey data. We demonstrate this approach using environmental and geospatial attributes to predict observed occupancy patterns of the Yosemite toad (Anaxyrus (= Bufo) canorus) across >2,500 meadows in Yosemite National Park (USA). A . canorus , a Federal Proposed Species, breeds in shallow water associated with meadows. Our generalized linear model (GLM) accurately predicted ~84% of true presence-absence data on a subset of data withheld for testing. The predicted environmental quality of each meadow was iteratively ‘boosted’ by the quality of neighbors within dispersal distance. We used this park-wide meadow connectivity network to estimate the relative influence of an individual Meadow’s ‘environmental quality’ versus its ‘network quality’ to predict: a) clusters of high quality breeding meadows potentially linked by dispersal, b) breeding meadows with high environmental quality that are isolated from other such meadows, c) breeding meadows with lower environmental quality where long-term persistence may critically depend on the network neighborhood, and d) breeding meadows with the biggest impact on park-wide breeding patterns. Combined with targeted data on dispersal, genetics, disease, and other potential stressors, these results can guide designation of core conservation areas for A . canorus in Yosemite National Park.  相似文献   

20.
Good early nutritional conditions may confer a lasting fitness advantage over individuals suffering poor early conditions (a ‘silver spoon’ effect). Alternatively, if early conditions predict the likely adult environment, adaptive plastic responses might maximize individual performance when developmental and adult conditions match (environmental-matching effect). Here, we test for silver spoon and environmental-matching effects by manipulating the early nutritional environment of Nicrophorus vespilloides burying beetles. We manipulated nutrition during two specific early developmental windows: the larval environment and the post-eclosion environment. We then tested contest success in relation to variation in adult social environmental quality experienced (defined according to whether contest opponents were smaller (good environment) or larger (poor environment) than the focal individual). Variation in the larval environment influenced adult body size but not contest success per se for a given adult social environment experienced (an ‘indirect’ silver spoon effect). Variation in post-eclosion environment affected contest success dependent on the quality of the adult environment experienced (a context-dependent ‘direct’ silver spoon effect). By contrast, there was no evidence for environmental-matching. The results demonstrate the importance of social environmental context in determining how variation in nutrition in early life affects success as an adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号