首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of IκB kinase (IKK)-induced proteolysis of NF-κB1 p105 in innate immune signaling was investigated using macrophages from Nfkb1(SSAA/SSAA) mice, in which the IKK target serines on p105 are mutated to alanines. We found that the IKK/p105 signaling pathway was essential for TPL-2 kinase activation of extracellular signal-regulated kinase (ERK) mitogen-activate protein (MAP) kinase and modulated the activation of NF-κB. The Nfkb1(SSAA) mutation prevented the agonist-induced release of TPL-2 from its inhibitor p105, which blocked activation of ERK by lipopolysaccharide (LPS), tumor necrosis factor (TNF), CpG, tripalmitoyl-Cys-Ser-Lys (Pam(3)CSK), poly(I · C), flagellin, and R848. The Nfkb1(SSAA) mutation also prevented LPS-induced processing of p105 to p50 and reduced p50 levels, in addition to decreasing the nuclear translocation of RelA and cRel. Reduced p50 in Nfkb1(SSAA/SSAA) macrophages significantly decreased LPS induction of the IκBζ-regulated Il6 and Csf2 genes. LPS upregulation of Il12a and Il12b mRNAs was also impaired although specific blockade of TPL-2 signaling increased expression of these genes at late time points. Activation of TPL-2/ERK signaling by IKK-induced p105 proteolysis, therefore, induced a negative feedback loop to downregulate NF-κB-dependent expression of the proinflammatory cytokine interleukin-12 (IL-12). Unexpectedly, TPL-2 promoted soluble TNF production independently of IKK-induced p105 phosphorylation and its ability to activate ERK, which has important implications for the development of anti-inflammatory drugs targeting TPL-2.  相似文献   

2.
3.
4.
5.
6.
7.
Low dose methotrexate is the cornerstone for the treatment of rheumatoid arthritis. One of its major drawbacks is hepatotoxicity, resulting in poor compliance of therapy. Dissatisfied arthritis patients are likely to seek the option of complementary and alternative medicine such as bee venom. The combination of natural products with modern medicine poses the possibility of potential interaction between the two groups and needs investigation. The present study was aimed to investigate the modulatory effect of bee venom acupuncture on efficacy, toxicity, and pharmacokinetics and tissue disposition of methotrexate. Complete Freund''s adjuvant induced arthritic rats were treated for 3 weeks with methotrexate and/or bee venom. Arthritic score, ankle diameter, paw volume and tissue expression of NF-κB and TNF-α were determined to assess anti-arthritic effects, while anti-nociceptive effects were assessed by gait score and thermal hyperalgesia. Methotrexate toxicity was assessed by measuring serum TNF-α, liver enzymes and expression of NF-κB in liver. Combination therapy of bee venom with methotrexate significantly improved arthritic parameters and analgesic effect as compared to methotrexate alone. Bee venom ameliorated serum TNF-α and liver enzymes elevations as well as over expression of NF-κB in liver induced by methotrexate. Histological examination supported the results. And for the first time bee venom acupuncture was approved to increase methotrexate bioavailability with a significant decrease in its elimination. Conclusion: bee venom potentiates the anti-arthritic effects of methotrexate, possibly by increasing its bioavailability. Also, it provides a potent anti-nociceptive effect. Furthermore, bee venom protects against methotrexate induced hepatotoxicity mostly due to its inhibitory effect on TNF-α and NF-κB.  相似文献   

8.
9.
10.
11.
12.
13.
14.
This study aimed to investigate the potential beneficial effect of an antioxidant lignan, Schisandrin B (Sch B), against cisplatin (cDDP) induced oxidative stress mediated geno- and neuro-toxicities. A dose of 10 mg/kg cDDP induced considerable genotoxicity in mice, and Sch B treatment attenuated the cDDP-induced DNA damage as assessed by the comet assay in the brain. The frequency of micro-nucleated erythrocyte production in bone marrow was also significantly reduced by Sch B treatment in cDDP-treated mice. In neurobehavioral studies, Sch B significantly prevented the memory deficits induced by cDDP, and had an anxiolytic effect in the elevated plus maze task. Sch B treatment significantly attenuated lipid peroxidation, acetylcholinesterase activity and nitrite levels induced by cDDP. Furthermore, Sch B effectively inhibited NF-κB and p53 activation, and cleaved caspase-3 expression in cDDP-treated mice. Hence, Sch B with potent antioxidant and neuro-protective property with no mutagenic activity would be beneficial complementary food factor against cDDP induced oxidative stress.  相似文献   

15.
16.
Wnt5a can activate β-catenin-independent pathways for regulation of various cellular functions, such as migration, that play critical roles in wound repair. Investigation of Wnt5a signaling may help identify therapeutic targets for enhancing corneal endothelial wound healing that could provide an alternative to corneal transplantation in patients with blindness from endothelial dysfunction. However, Wnt5a signaling in corneal endothelial cells (CECs) has not been well characterized. In this study, we show transient induction of Wnt5a by interleukin-1β (IL-1β) stimulation proceeds through NF-κB in human CECs. This leads to binding of Fzd5 to Ror2, resulting in activation of disheveled protein (Dvl) and subsequently disheveled-associated activator of morphogenesis 1 (DAAM1). This leads to activation of Cdc42 and subsequent inhibition of RhoA. Inhibition of RhoA leads to parallel dephosphorylation and inactivation of LIM domain kinase 2 along with dephosphorylation and activation of slingshot 1, resulting in dephosphorylation and activation of cofilin and leading to enhanced cell migration. These findings suggest that Wnt5a enhances cell migration through activation of Cdc42 and inactivation of RhoA in human CECs.  相似文献   

17.
Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for atherosclerosis. Oxidative stress, inflammation, and cell apoptosis are major pathological events initiating or accelerating atherogenesis. This study addressed whether IH would affect these proatherogenic factors in endothelial cells and the mechanistic pathways involved. EA.hy926 cells were exposed to intermittent normoxia or IH for different numbers of cycles (32, 64, or 96). IH exposure time-dependently raised cellular GSSG/GSH ratio, increased production of IL-6 and IL-8, and accelerated cell apoptosis and death, concurrent with activation of NF-κB and inhibition of Nrf2/HO-1 pathways. At 64 cycles, inhibition of NF-κB attenuated IH-induced cellular oxidative stress and accumulation of inflammatory cytokines in cell culture medium but aggravated IH-induced cell apoptosis, while stimulation of HO-1 suppressed IH-induced cellular oxidative stress and cell apoptosis without affecting accumulation of inflammatory cytokines in cell culture medium. We demonstrated that early stage of exposure to IH-induced oxidative and inflammatory stresses leading to acceleration of cell apoptosis via NF-κB and Nrf2/HO-1 pathways in endothelial cells, suggesting the potential mechanisms for IH-induced vascular pathogenesis, in resemblance to OSA.  相似文献   

18.
High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways.  相似文献   

19.
We have previously shown that UEV1 is up-regulated in all tumor cell lines examined and when SV40-transformed human embryonic kidney cells undergo immortalization; however, it is unclear whether and how UEV1 plays a critical role in this process. UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13 (ubiquitin conjugating enzyme) catalyzed poly-ubiquitination of target proteins through Lys63-linked chains. One of the target proteins is NEMO/IKKγ (nuclear factor-κB essential modulator/inhibitor of κB protein kinase), a regulatory subunit of IκB kinase in the NF-κB signaling pathway. In this report, we show that constitutive high-level expression of UEV1A alone in cultured human cells was sufficient to cause a significant increase in NF-κB activity as well as the expression of its target anti-apoptotic protein, Bcl-2 (B-cell leukemia/lymphoma 2). Overexpression of UEV1A also conferred prolonged cell survival under serum-deprived conditions, and protected cells against apoptosis induced by diverse stressing agents. All of the effects of Uev1A were reversible upon suppression of UEV1 expression by RNA interference. Our observations presented in this report provide evidence that Uev1A is a critical regulatory component in the NF-κB signaling pathway in response to environmental stresses and identify UEV1A as a potential proto-oncogene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号