首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
开垦对黄河三角洲湿地净生态系统CO2交换的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来, 由于对湿地的不合理利用, 自然湿地被大面积地垦殖为农田, 导致湿地生态系统碳循环的模式发生改变, 从而影响了湿地生态系统碳汇功能。该研究通过涡度相关法, 对山东省东营市黄河三角洲芦苇(Phragmites australis)湿地和开垦多年的棉花(Gossypium spp.)农田的净生态系统CO2交换(NEE)进行了对比观测, 以探讨该地区典型生态系统NEE的变化规律及其影响因子, 揭示开垦对芦苇湿地NEE和碳汇功能的影响。结果表明: 在生长季, 湿地和农田生态系统NEE的日平均值各月均呈明显的“U”型变化曲线, 非生长季NEE的变幅很小。生长季湿地生态系统日最大净吸收值和释放值分别为16.04 g CO2·m-2·d-1(8月17日)和14.95 g CO2·m-2·d-1(8月9日); 农田生态系统日最大净吸收值和释放值分别为18.99 g CO2·m-2·d-1 (8月22日)和12.23 g CO2·m-2·d-1 (7月29日)。生长季白天两个生态系统NEE与光合有效辐射(PAR)之间呈直角双曲线关系; 非生长季NEE主要受土壤温度(Ts)的影响; 生态系统生长季夜间NEETs和土壤含水量(SWC)的共同影响; 湿地和农田的生态系统呼吸熵(Q10)分别为2.30和3.78。2011年生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的汇, 总净固碳量分别为780.95和647.35 g CO2·m-2, 开垦降低了湿地的碳吸收能力; 而在2011年非生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的源, CO2总释放量分别为181.90和111.55 g CO2·m-2。全年湿地和农田生态系统总净固碳量分别为599.05和535.80 g CO2·m-2。  相似文献   

2.
为探究草原生态系统固碳能力,利用锡林浩特国家气候观象台2018—2021年的涡动相关资料分析了锡林浩特草原生态系统CO2通量的变化特征以及环境因子对CO2通量的影响,并对通量源区分布进行了探讨。结果表明:研究区全年盛行西南风,生长季的源区面积大于非生长季,大气稳定条件下的源区面积大于不稳定条件;90%贡献率的源区最大长度接近400 m,与经典法则估算的长度一致。锡林浩特草原净生态系统碳交换量(NEE)具有明显的日变化和季节变化,生长季白天为碳汇,夜间为碳源,非生长季白天和夜间均为弱碳源。2018—2021年,年总NEE分别为-15.59、-46.28、-41.94和-78.14 g C·m-2·a-1,平均值为-45.49 g C·m-2·a-1,表明锡林浩特草原有较强的固碳能力。饱和水汽压差和光合有效辐射有助于草原生态系统吸收大气中CO2;夜间,当温度高于0℃时,气温和土壤温度升高会促进植被呼吸作用释放CO2。  相似文献   

3.
温度和水分对科尔沁草甸湿地净生态系统碳交换量的影响   总被引:1,自引:0,他引:1  
基于涡度相关和波文比气象土壤监测系统,研究了2016年科尔沁草甸湿地生态系统生长季5—9月CO2通量的动态变化特征,分析了温度、水分等环境因子与其的响应关系.结果表明:生长季累计净生态系统碳交换量(NEE)为-766.18 g CO2·m-2,总初级生产力(GPP)和生态系统呼吸量(Re)分别为3379.89和2613.71 g CO2·m-2,Re/GPP为77.3%,表现为明显的碳汇.NEE各月平均日变化呈单峰“U”型曲线,其中5—7月和8月中旬表现为吸收CO2,8月后半月和9月表现为释放CO2.日间NEE与光合有效辐射(PAR)呈显著的直角双曲线关系,同时受饱和水汽压差(VPD)、土壤含水量(SWC)和气温(Ta)等环境要素调控.回归关系表明,日间NEE达到最大时,VPD和SWC值分别为1.75 kPa和35.5%,而NEE随Ta增加逐渐增大,当Ta达到最大时,并未对NEE产生抑制作用;夜间NEE随土壤温度(Ts)呈指数趋势上升.在整个生长季,生态系统呼吸的温度敏感性指数(Q10)为2.4,且SWC越高,Q10越小,夜间NEE受Ts和SWC共同调控.  相似文献   

4.
孙成  江洪  周国模  杨爽  陈云飞 《生态学杂志》2013,24(10):2717-2724
2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明: 研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.  相似文献   

5.
展鹏飞  仝川 《应用生态学报》2023,(11):2958-2968
湿地生态系统是吸收全球大气二氧化碳(CO2)的汇,同时土壤厌氧环境造成其是大气甲烷(CH4)的源。尽管有证据表明,湿地生态系统CH4排放部分抵消其对大气CO2的净吸收,但目前未见全球尺度湿地CH4排放对其净生态系统CO2交换(NEE)抵消效应的研究。本研究分析了全球内陆湿地(泥炭湿地和非泥炭湿地)以及滨海湿地(海草床、盐沼和红树林)中同时测定湿地NEE和CH4排放通量的数据。结果表明:各类型湿地生态系统均为大气CO2的汇,NEE值排序为红树林(-2011.0 g CO2·m-2·a-1)<盐沼(-1636.6 g CO2·m-2·a-1)<非泥炭地(-870.8 g CO2·m-2·a-1)<泥炭地(...  相似文献   

6.
2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明: 研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.  相似文献   

7.
氮沉降增加将影响草原生态系统固碳, 但如何影响草原生态系统CO2交换目前为止还没有定论。同时, 不同类型和剂量氮素对生态系统CO2交换影响的差异也不明确。选取内蒙古额尔古纳草甸草原, 开展了不同类型氮肥和不同剂量氮素添加条件下生态系统CO2交换的野外测定。实验设置尿素和缓释尿素2种类型氮肥各5个剂量水平(0、5.0、10.0、20.0和50.0 g N·m-2·a-1)。结果显示, 生长季初期及中期降雨量低时, 氮素添加抑制生态系统CO2交换; 而生长季末期降雨量较高时促进生态系统CO2交换。随着氮素添加水平的提高, NEE和GEP均显著增加, 当氮素添加量达到10 g N·m-2·a-1时, NEE和GEP的响应趋于饱和。2种氮肥(尿素和缓释尿素)仅在施氮量为5 g N·m-2·a-1时, 缓释尿素对生态系统CO2交换的促进作用显著大于尿素, 在其它添加剂量时差异不显著。研究结果表明: 氮素是该草甸草原生态系统的重要限制因子, 但氮沉降增加对生态系统CO2交换的影响强烈地受降雨量与降雨季节分配的限制, 不同氮肥(尿素和缓释尿素)对生态系统CO2交换作用存在差异。  相似文献   

8.
中国北方针叶林生长季碳交换及其调控机制   总被引:1,自引:1,他引:0  
采用开路式涡动相关法对北方针叶林连续2个生长季节(2007和2008年)的碳交换及其影响因素进行分析.结果表明:北方针叶林生态系统总生产力(GEP)、生态系统呼吸(Re)和净生态系统碳交换(NEE)在6月下旬到8月中旬的生长旺盛期达到最大值,但各峰值出现的日期并不一致.2007和2008年北方针叶林生长季的日均GEP、日均Re、日均NEE分别为19.45、15.15、-1.45 g CO2·m-2·d-1和17.67、14.11、-1.37 g CO2·m-2·d-1,2007年碳交换明显大于2008年,这可能是生长季较高的平均温度及光合有效辐射引起(2007年为12.46 ℃和697 μmol·m-2·s-1,2008年为11,04 ℃和639 μmol·m-2·s-1).北方针叶林的GEP与温度和光合有效辐射具有很好的相关性,其中与气温的相关系数接近0.55(P<0.01);Re主要受温度调控,相关系数为0.66~0.72(P<0,01);NEE与光合有效辐射相关性最大,相关系数为0.59~0.63 (P<0.01).  相似文献   

9.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7-9月)较高、生长初期(5-6月)和生长末期(10-11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

10.
采用涡度相关法对2005年生长季内蒙古锡林河流域羊草(Leymus chinensis)草原净生态系统交换(Net ecosystem exchange, NEE)进行了观测。观测结果表明:作为生长季降雨量仅有126 mm的干旱年,锡林河流域羊草草原生态系统受到强烈的干旱胁迫,其净生态系统碳交换的日动态表现为具有两个吸收高峰,净吸收峰值出现在8∶00和18∶00左右。最大的CO2吸收率为-0.38 mg CO2·m-2·s-1,出现在6月底,与丰水年相比生态系统最大CO2吸收率下降了1倍。就整个生长季而言,不管是白天还是晚上2005年都表现为净CO2排放,整个生长季CO2净排放量为372.56 g CO2·m-2,是一个明显的CO2源。土壤含水量和土壤温度控制着生态系统CO2通量的大小,尤其是在白天,CO2通量和土壤含水量的变化呈现出显著的负相关关系,和土壤温度表现为正相关关系。  相似文献   

11.
川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征   总被引:1,自引:0,他引:1  
张元媛  朱万泽  孙向阳  胡兆永 《生态学报》2018,38(17):6125-6135
成熟森林的碳收支对陆地生态系统碳循环研究具有重要意义。目前,我国关于西南亚高山暗针叶林成熟林碳通量的研究还相对较少,尚不明确对碳循环的作用。以涡度相关技术为基础,对川西贡嘎山东坡峨眉冷杉成熟林生态系统尺度的CO_2通量进行长期定位观测。利用2015年6月至2016年5月观测数据,分析了峨眉冷杉成熟林净生态系统CO_2交换量(NEE)、生态系统呼吸(Re)和总生态系统生产力(GPP)的季节变异特征及其源汇状况,并结合环境因子,分析CO_2通量的主要控制因子。结果表明:(1)峨眉冷杉成熟林NEE具有明显的日变化特征,呈现"U"形变化,白天为负值,夜间为正值,中午前后CO_2通量达到最大;各月间日平均NEE变化差异显著,NEE峰值最大出现在2015年6月(-0.64 mg CO_2m~(-2)s~(-1)),峰值最小出现在2016年1月(-0.08 mg CO_2m~(-2)s~(-1));日平均NEE由正值变为负值的时间夏季最早,冬季最晚,NEE由负值变为正值的时间冬季最早,夏季最晚。(2)峨眉冷杉成熟林NEE、Re和GPP具有明显的月变化。2015年6月和12月NEE分别达到最大值(-46.02 g C m~(-2)月~(-1))和最小值(-1.42 g C m~(-2)月~(-1));Re呈现单峰变化,最大和最小值分别出现在2015年6月(84.78 g C m~(-2)月~(-1))和2016年1月(12.82 g C m~(-2)月~(-1));GPP最大值和最小值分别出现在2015年6月(130.81 g C m~(-2)月~(-1))与2016年1月(16.15 g C m~(-2)月~(-1))。(3)空气温度(T_a)、5 cm土壤温度(T_(s5))和光合有效辐射(PAR)是影响峨眉冷杉成熟林CO_2通量的主要环境因子。T_a与CO_2通量呈指数相关(R~2=0.5283,P0.01);白天CO_2通量与PAR显著相关(R~2=0.4373,P0.01);夜晚CO_2通量与T_(s5)显著相关(R~2=0.4717,P0.01)。(4)全年NEE、Re和GPP分别为-241.87、564.81 g C m~(-2)和806.68 g C m~(-2),表明川西贡嘎山峨眉冷杉成熟林具有较强的碳汇功能。  相似文献   

12.
太湖流域典型稻麦轮作农田生态系统碳交换及影响因素   总被引:4,自引:0,他引:4  
徐昔保  杨桂山  孙小祥 《生态学报》2015,35(20):6655-6665
利用涡度相关技术观测太湖流域典型稻麦轮作农田生态系统2a净生态系统碳交换(NEE)变化过程,分析其碳交换特征及影响机理,结果表明:太湖流域典型稻麦轮作农田年NEE为-749.49—-785.38 g C m-2a-1,考虑作物籽粒碳和秸秆还田后净吸收88.12 g C m-2a-1,为弱碳汇;稻/麦季日均NEE和白天NEE季节变化直接受作物植被生长影响;麦季夜间NEE与10 cm土壤温度呈显著指数关系,2012/2013年温度敏感系数(Q10)分别为3.03和2.67;当土壤水分低于田间持水量时,麦季夜间NEE主要受土壤温度影响,反之,夜间NEE受土壤温度和水分双重影响;降水对麦季夜间NEE有短时的激发效应;稻季淹水对土壤呼吸产生较明显的阻滞效应,降低了夜间NEE对土壤温度的敏感性,2012和2013年分别为1.88和1.39,稻季淹水与烤田交替变化对土壤呼吸产生明显的抑制或激发的短时效应。  相似文献   

13.
全球气候变化引起的气温日较差(ADT)减小,将会对高寒生态系统的碳平衡造成深刻影响。基于涡度相关系统,利用2003-2016年的涡度相关系统观测资料,做了青藏高原高寒灌丛在生长季(6-9月)不同月份的ADT对CO2通量影响的研究。结果表明:2003-2016年的生长季中,最高气温(MaxTa)和最低气温(MinTa)呈先升高后降低的单峰变化趋势,ADT没有呈现明显的变化趋势。逐日总初级生产力(GPP)和生态系统呼吸(Re)呈先增加后降低的单峰趋势,逐日净生态系统CO2交换(NEE)呈先下降后上升的"V"型变化趋势。高寒灌丛在生长季为碳汇,整个生长季总NEE、GPP和Re平均值分别为(-161.2±30.1)、(501.9±60.2)、(340.7±54.4) gCm-2。在高寒灌丛生长季(6-9月)的每个月份,MaxTa、MinTa和ADT分别是GPP(P<0.001)、ReP<0.001)和NEE(P<0.01)变化的主要控制因子。高寒灌丛的ADT的增大有利于生态系统的碳固持,暗示在未来气候变化背景下ADT的减小将会削弱高寒灌丛生态系统的碳汇能力。  相似文献   

14.
Zhang L  Yu G R  Luo Y Q  Gu F X  Zhang L M 《农业工程》2008,28(7):3017-3026
Model predictions can be improved by parameter estimation from measurements. It was assumed that measurement errors of net ecosystem exchange (NEE) of CO2 follow a normal distribution. However, recent studies have shown that errors in eddy covariance measurements closely follow a double exponential distribution. In this paper, we compared effects of different distributions of measurement errors of NEE data on parameter estimation. NEE measurements in the Changbaishan forest were assimilated into a process-based terrestrial ecosystem model. We used the Markov chain Monte Carlo method to derive probability density functions of estimated parameters. Our results showed that modeled annual total gross primary production (GPP) and ecosystem respiration (Re) using the normal error distribution were higher than those using the double exponential distribution by 61–86 gC m?2 a?1 and 107–116 gC m?2 a?1, respectively. As a result, modeled annual sum of NEE using the normal error distribution was lower by 29–47 gC m?2 a?1 than that using the double exponential error distribution. Especially, modeled daily NEE based on the normal distribution underestimated the strong carbon sink in the Changbaishan forest in the growing season. We concluded that types of measurement error distributions and corresponding cost functions can substantially influence the estimation of parameters and carbon fluxes.  相似文献   

15.
以青藏高原玛沁地区高寒草甸和沱沱河地区高寒荒漠草原为观测研究站,利用涡动协方差技术获取高寒生态系统水平上的CO2通量以及水和能量通量,通过REddyProc、随机森林(Random Forest, RF)进行了数据后处理,探究了不同下垫面典型环境因子对净生态系统CO2交换量(Net Ecosystem Exchange, NEE)的影响机制。结果表明:1)玛沁高寒草甸在6—7月以吸收为主,表现为碳汇,吸收峰值出现在11:00—12:00(北京时,下同)之间,而在3、4、5、8月以排放为主,表现为碳源,排放峰值出现在21:00—23:00之间;沱沱河高寒荒漠在3—8月以吸收为主,表现为净碳汇,吸收峰值出现在13:00—14:00之间;整个生长季前后(3—8月),玛沁和沱沱河的累计NEE分别为79.50 g C/m2和79.24 g C/m2,都表现为碳汇。2)不同尺度不同下垫面,气象因子对NEE的重要程度不同,小时尺度上,高寒草甸辐射对NEE的重要性最大,高寒荒漠草原蒸散发对NEE的重要性最大;日尺度...  相似文献   

16.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   

17.
Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.  相似文献   

18.
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.  相似文献   

19.
The area under the cultivation of perennial bioenergy crops on organic soils in the northern countries is fast increasing. To understand the impact of reed canary grass (RCG, Phalaris arundinaceae L.) cultivation on the carbon dioxide (CO2) balance of an organic soil, net ecosystem CO2 exchange (NEE) was measured for four years in a RCG cultivated cutover peatland in eastern Finland using the eddy covariance technique. There were striking differences among the years in the annual precipitation. The annual precipitation was higher during 2004 and 2007 and lower during 2005 and 2006 than the 1971–2000 regional mean. During wet growing seasons, moderate temperatures, high surface soil moisture and low evaporative demand favoured high CO2 uptake. During dry seasons, owing to soil moisture and atmospheric stress, photosynthetic activity was severely restricted. The CO2 uptake [gross primary productivity (GPP)] was positively correlated with soil moisture, air temperature and inversely with vapour pressure deficit. Total ecosystem respiration (TER) increased with increasing soil temperature but decreased with increasing soil moisture. The relative responses of GPP and TER to moisture stress were different. While changes in TER for a given change in soil moisture were moderate, variations in GPP were drastic. Also, the seasonal variations in TER were not as conspicuous as those in GPP implying that GPP is the primary regulator of the interannual variability in NEE in this ecosystem. The ecosystem accumulated a total of 398 g C m?2 from the beginning of 2004 until the end of 2007. It retained some carbon during a wet year such as 2004 even after accounting for the loss of carbon in the form of harvested biomass. Based on this CO2 balance analysis, RCG cultivation is found to be a promising after‐use option on an organic soil.  相似文献   

20.
由于荒漠生态系统植被覆盖度低、生产力低下,其在全球碳循环中的作用被长期忽视。为探讨荒漠生态系统碳收支各组分的变化规律,以腾格里荒漠红砂(Reaumuria soongorica Maxim.)-珍珠(Salsola passerina Beg.)群落为研究对象,采用静态箱式法研究了该群落的净生态系统CO2交换量(NEE)、生态系统呼吸、土壤呼吸的日变化规律,同时将该方法所获得的NEE结果与涡动相关法观测的结果进行了比较。结果表明:(1)红砂-珍珠群落NEE的日变化表现为,在6:00—9:00左右出现一个CO2吸收的高峰值,随后在12:00—15:00左右出现一个CO2释放高峰值。红砂种群、珍珠种群和整个群落NEE的平均值分别为0.018、0.020和0.028 mg CO2m-2s-1;(2)红砂种群、珍珠种群、土壤及整个群落生态系统呼吸速率的日变化规律一致,均表现为明显的单峰变化趋势,在12:00—15:00左右出现一个CO2释放的高峰值。红砂种群、珍珠种群、土壤和整个群落的生态系统呼吸的平均值分别为:0.121、0.062、0.029和0.040 mg CO2m-2s-1。以盖度为加权因子计算得到红砂种群、珍珠种群和土壤呼吸占生态系统呼吸的比例分别为:9%、21%和70%,由此可见,生态系统呼吸主要来源于土壤呼吸。(3)将箱式法和涡动相关法观测的NEE进行比较,结果表明两种方法观测的NEE变化规律基本一致,相关系数达到0.7。采用箱式法观测的NEE高于涡动相关法观测的结果,平均值分别0.028 mg CO2m-2s-1(箱式法)和0.015 mg CO2m-2s-1(涡动相关法),涡动相关法的观测结果与箱式法观测结果的比值为0.54。综上可得,荒漠生态系统土壤呼吸的变化速率决定了生态系统呼吸的变化规律,采用箱式法可能高估了荒漠生态系统CO2的释放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号