首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lepidopteran transposable element piggyBac is being recognized as a useful vector for genetic engineering in a variety of insect species. This transposon can mediate transformation in the Dipteran species Ceratitis capitata, and can potentially serve as a versatile vector for transformation of a wide variety of insect species. Using a plasmid-based interplasmid transposition assay, we have demonstrated that this transposon, of the short inverted terminal repeat type, is capable of transposition in embryos of three different insect species, Drosophila melanogaster, the yellow fever mosquito Aedes aegypti, and its host of origin, Trichoplusia ni. This assay can confirm the potential utility of piggyBac as a gene transfer tool in a given insect species, and provides an experimental model for assessing molecular mechanisms of transposon movement.  相似文献   

2.
The Lepidopteran transposable element piggyBac is being recognized as a useful vector for genetic engineering in a variety of insect species. This transposon can mediate transformation in the Dipteran species Ceratitis capitata, and can potentially serve as a versatile vector for transformation of a wide variety of insect species. Using a plasmid-based interplasmid transposition assay, we have demonstrated that this transposon, of the short inverted terminal repeat type, is capable of transposition in embryos of three different insect species, Drosophila melanogaster, the yellow fever mosquito Aedes aegypti, and its host of origin, Trichoplusia ni. This assay can confirm the potential utility of piggyBac as a gene transfer tool in a given insect species, and provides an experimental model for assessing molecular mechanisms of transposon movement. Received: 19 November 1998 / Accepted: 1 March 1999  相似文献   

3.
Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon.  相似文献   

4.
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.  相似文献   

5.
Lobo NF  Fraser TS  Adams JA  Fraser MJ 《Genetica》2006,128(1-3):347-357
The piggyBac transposon is an extremely versatile helper-dependent vector for gene transfer and germ line transformation in a wide range of invertebrate species. Analyses of genome sequencing databases have identified piggyBac homologues among several sequenced animal genomes, including the human genome. In this report we demonstrate that this insect transposon is capable of transposition in primate cells and embryos of the zebrafish, Danio rerio. piggyBac mobility was demonstrated using an interplasmid transposition assay that has consistently predicted the germ line transformation capabilities of this mobile element in several other species. Both transfected COS-7 primate cells and injected zebrafish embryos supported the helper-dependent movement of tagged piggyBac element between plasmids in the characteristic cut-and-paste, TTAA target-site specific manner. These results validate piggyBac as a valuable tool for genetic analysis of vertebrates.  相似文献   

6.
The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15–30 of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.  相似文献   

7.
Mobile genetic elements have been harnessed for gene transfer for a wide variety of applications including generation of stable cell lines, recombinant protein production, creation of transgenic animals, and engineering cell and gene therapy products. The piggyBac transposon family includes transposase or transposase-like proteins from a variety of species including insect, bat and human. Recently, human piggyBac transposable element derived 5 (PGBD5) protein was reported to be able to transpose piggyBac transposons in human cells raising possible safety concerns for piggyBac-mediated gene transfer applications. We evaluated three piggyBac-like proteins across species including piggyBac (insect), piggyBat (bat) and PGBD5 (human) for their ability to mobilize piggyBac transposons in human cells. We observed a lack of cross-species transposition activity. piggyBac and piggyBat activity was restricted to their cognate transposons. PGBD5 was unable to mobilize piggyBac transposons based on excision, colony count and plasmid rescue analysis, and it was unable to bind piggyBac terminal repeats. Within the piggyBac family, we observed a lack of cross-species activity and found that PGBD5 was unable to bind, excise or integrate piggyBac transposons in human cells. Transposition activity appears restricted within species within the piggyBac family of mobile genetic elements.  相似文献   

8.
The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti.  相似文献   

9.
The piggyBac transposon is the most widely used vector for generating transgenic silkworms. The silkworm genome contains multiple piggyBac-like sequences that might influence the genetic stability of transgenic lines. To investigate the postintegration stability of piggyBac in silkworms, we used random insertion of the piggyBac [3 × p3 EGFP afm] vector to generate a W chromosome-linked transgenic silkworm, named W-T. Results of Southern blot and inverse PCR revealed the insertion of a single copy in the W chromosome of W-T at a standard TTAA insertion site. Investigation of 11 successive generations showed that all W-T females were EGFP positive and all males were EGFP negative; PCR revealed that the insertion site was unchanged in W-T offspring. These results suggested that endogenous piggyBac-like elements did not affect the stability of piggyBac inserted into the silkworm genome.  相似文献   

10.
11.
The excision of specific DNA sequences from integrated transgenes in insects permits the dissection in situ of structural elements that may be important in controlling gene expression. Furthermore, manipulation of potential control elements in the context of a single integration site mitigates against insertion site influences of the surrounding genome. The cre–loxP site-specific recombination system has been used successfully to remove a marker gene from transgenic yellow fever mosquitoes, Aedes aegypti. A total of 33.3% of all fertile families resulting from excision protocols showed evidence of cre–loxP-mediated site-specific excision. Excision frequencies were as high as 99.4% within individual families. The cre recombinase was shown to precisely recognize loxP sites in the mosquito genome and catalyze excision. Similar experiments with the FLP/FRT site-specific recombination system failed to demonstrate excision of the marker gene from the mosquito chromosomes.  相似文献   

12.
《Insect Biochemistry》1987,17(8):1181-1186
Using a sensitive TLC method, we have detected the production of xanthine monophosphate (XMP) from [14C]xanthine by mosquito cell extracts incubated in the presence of phosphoribosyl pyrophosphate and a phosphatase inhibitor. Extracts from both cultured Aedes albopictus cells, and from intact Aedes aegypti mosquitoes contained activity; particularly high activity was found in extracts from adult male mosquitoes. XMP-producing activity was at least 4-fold higher in extracts from cultured mosquito cells than in extracts from Drosophila melanogaster Kc cells or Spodoptera frugiperda (Lepidoptera) cells.  相似文献   

13.
14.
A modified hobo element from Drosophila melanogaster was introduced into embryos of the housefly, Musca domestica (family Muscidae) and the Queensland fruitfly, Bactrocera tryoni (family Tephritidae) to assess its ability to transpose. Hobo was capable of transposition in these species and transposition products had all of the hallmarks of hobo transposition products recovered from D. melanogaster, including the movement only of sequences precisely delimited by the inverted terminal repeats of hobo, the creation of an 8 by duplication of the insertion site and an absolute requirement for hobo-encoded transposase. Transposition of hobo into the target gene resulted in a non-random distribution of insertion sites, with 10 of 38 independent insertions into the same nucleotide position. The results indicate that hobo can transpose in heterologous species, further demonstrating the similarty of hobo to Ac (Activator) of Zea mays and Tam3 of Antirrhinum majus. Hobo has excellent potential to act as a gene vector or gene tagging agent in nondrosophilid insects.  相似文献   

15.
16.
Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis of Wolbachia-mediated dengue virus blocking in insects is more complex than simple priming of the host insect innate immune system.  相似文献   

17.
Mobilization rates of nine families of transposable elements (P, hobo, FB, gypsy, 412, copia, blood, 297, andjockey) were estimated by using 182 lines. Lines were started from a completely isogenic population ofDrosophila melanogaster, carrying the markersepia as an indicator of possible contamination, and have been accumulating spontaneous mutations independently for 80 generations of brother-sister (or two double-first-cousin) matings. Transposable element movements have been analyzed in complete genomes by the Southern technique. Mobilization was a rare event, with an average rate of 10?5 per site per generation. The most active element wasFB. In contrast, the retroelementsgypsy andblood did not move at all. Most changes in restriction patterns were consistent with rearrangements rather than with true transposition. The euchromatic or heterochromatic location of elements was tested by comparing insertion patterns from adults and salivary glands. Certain putative rearrangements involved heterochromatic copies of the retroelements412, copia or297. Clustering of movement across families was observed, suggesting that movement of different families may be non-independent. An association between modified insertion patterns and mutant effects on quantitative traits shows that spontaneous transposition events cause continuous variation.  相似文献   

18.
19.
Summary P element transposons in Drosophila melanogaster are capable of mobilizing incomplete P elements elsewhere in the genome, and of inducing recombination. This recombination is usually only of the order of 1% or less. We show that two P elements, located at exactly homologous sites, induce levels of recombination of 20% or higher. The recombination appears to be exact, as determined by the lack of phenotypic effects in recombinant products and the lack of size changes detectable by Southern hybridization. Female recombination is increased, but to a lesser extent than male recombination. Somatic recombination levels are also elevated. Alternative explanations for the high recombination levels are given in terms of the consequences of repair of an excision site and in terms of recombination as part of the replicative transposition process.  相似文献   

20.
Summary In this report we describe the successful transformation of Drosophila simulans with an autonomous P element from Drosophila melanogaster without the use of a selectable marker. This result demonstrates that there is no species barrier for P element transposition. Utilizing gel blotting and in situ hybridization techniques, we have monitored the behavior of newly-introduced P elements in several D. simulans transformed lines over twelve generations. In most instances, an overall increase in the number of P elements was observed. An examination of the frequency of P-element-bearing individuals in one line revealed the rapid spread of P elements through the population. Analysis of well-characterized sublines confirmed that P elements increase in number by transposition to new genomic sites. The formation of degenerate elements occurred in at least one case. These observations suggest that P elements may behave similarly in D. melanogaster and D. simulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号