首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.  相似文献   

2.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the ''mislocalization'' phenomenon.  相似文献   

3.
Jones SA  Shim SH  He J  Zhuang X 《Nature methods》2011,8(6):499-508
We report super-resolution fluorescence imaging of live cells with high spatiotemporal resolution using stochastic optical reconstruction microscopy (STORM). By labeling proteins either directly or via SNAP tags with photoswitchable dyes, we obtained two-dimensional (2D) and 3D super-resolution images of living cells, using clathrin-coated pits and the transferrin cargo as model systems. Bright, fast-switching probes enabled us to achieve 2D imaging at spatial resolutions of ~25 nm and temporal resolutions as fast as 0.5 s. We also demonstrated live-cell 3D super-resolution imaging. We obtained 3D spatial resolution of ~30 nm in the lateral direction and ~50 nm in the axial direction at time resolutions as fast as 1-2 s with several independent snapshots. Using photoswitchable dyes with distinct emission wavelengths, we also demonstrated two-color 3D super-resolution imaging in live cells. These imaging capabilities open a new window for characterizing cellular structures in living cells at the ultrastructural level.  相似文献   

4.
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.  相似文献   

5.
An optical encoder is a device that uses an interrupted light source-sensor pair to map linear or rotational motion onto a periodic signal. Simple, inexpensive optical encoders are used for precise positioning in machines such as desktop printers, disk drives, and astronomical telescopes. A strand of DNA labeled with a series of Fo?rster resonance energy transfer acceptor dyes can perform the same function at the nanometer scale, producing a periodic fluorescence signal that encodes the movement of a single donor-labeled molecular motor with high spatial and temporal resolution. Previous measurements of this type have employed encoders limited to five acceptor dyes, and hence five signal periods, restricting the range of motion that could be followed. Here we describe two methods for synthesizing double-stranded DNA containing several to hundreds of regularly spaced dyes on one strand. Distinct functional groups incorporated at the encoder ends enable tethering for single-molecule measurements.  相似文献   

6.
Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscopes. However, until recently, live-cell imaging approaches have eluded super-resolution microscopy, hampering it from reaching its full potential for revealing the dynamic interactions in biology occurring at the single molecule level. Here we examine recent advances in the super-resolution imaging of living cells by reviewing recent breakthroughs in single molecule localization microscopy methods such as PALM and STORM to achieve this important goal.  相似文献   

7.
Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.  相似文献   

8.
Super-resolution imaging by single-molecule localization (localization microscopy) provides the ability to unravel the structural organization of cells and the composition of biomolecular assemblies at a spatial resolution that is well below the diffraction limit approaching virtually molecular resolution. Constant improvements in fluorescent probes, efficient and specific labeling techniques as well as refined data analysis and interpretation strategies further improved localization microscopy. Today, it allows us to interrogate how the distribution and stoichiometry of interacting proteins in subcellular compartments and molecular machines accomplishes complex interconnected cellular processes. Thus, it exhibits potential to address fundamental questions of cell and developmental biology. Here, we briefly introduce the history, basic principles, and different localization microscopy methods with special focus on direct stochastic optical reconstruction microscopy (dSTORM) and summarize key developments and examples of two- and three-dimensional localization microscopy of the last 8 years.  相似文献   

9.
Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.  相似文献   

10.
Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction‐limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single‐molecule photo‐switching are opposed. Here, we developed a novel superCLEM workflow that combines triple‐color SMLM (dSTORM & PALM) and electron tomography using semi‐thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub‐compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.  相似文献   

11.
We developed a method to use any GFP-tagged construct in single-molecule super-resolution microscopy. By targeting GFP with small, high-affinity antibodies coupled to organic dyes, we achieved nanometer spatial resolution and minimal linkage error when analyzing microtubules, living neurons and yeast cells. We show that in combination with libraries encoding GFP-tagged proteins, virtually any known protein can immediately be used in super-resolution microscopy and that simplified labeling schemes allow high-throughput super-resolution imaging.  相似文献   

12.
《Biophysical journal》2019,116(11):2073-2078
We introduce a method for registration and visualization of correlative super-resolution microscopy images from different microscopy techniques. We established an automated registration procedure based on the generalized Hough transform. We developed a software tool to apply this algorithm and visualize correlated images from structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). To demonstrate the potential of this super-resolution correlator, we visualize the distribution of the presynaptic protein bassoon in the active zones of synapses in the molecular layer of the mouse cerebellum. First, a multiple labeled sample is imaged by SIM, followed by imaging of one of the fluorescent labels by dSTORM. To avoid the use of artificial fiducial markers, we used the signal of Alexa Fluor 647 recorded in switching buffer on the two microscopes for image superposition. We recorded multicolor SIM images in 20-μm thick brain slices to identify synapses in the dendritic system of Purkinje cells and put higher-resolved dSTORM images of the synaptic distribution of bassoon in registry.  相似文献   

13.
Xu K  Babcock HP  Zhuang X 《Nature methods》2012,9(2):185-188
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.  相似文献   

14.
Multi-color stochastic optical reconstruction microscopy (STORM) is routinely performed; however, the various approaches for achieving multiple colors have important caveats. Color cross-talk, limited availability of spectrally distinct fluorophores with optimal brightness and duty cycle, incompatibility of imaging buffers for different fluorophores, and chromatic aberrations impact the spatial resolution and ultimately the number of colors that can be achieved. We overcome these complexities and develop a simple approach for multi-color STORM imaging using a single fluorophore and sequential labelling. In addition, we present a simple and versatile method to locate the same region of interest on different days and even on different microscopes. In combination, these approaches enable cross-talk-free multi-color imaging of sub-cellular structures.  相似文献   

15.
Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique.  相似文献   

16.
Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-adhesion interface of cells and protrude into the extracellular matrix to probe and remodel. Despite their central role in many cellular processes, their exact molecular structure and function remain only partially understood. We review recent progress in molecular scale imaging of podosome architecture, including our newly developed localisation microscopy technique termed HAWK which enables artefact-free live-cell super-resolution microscopy of podosome ring proteins, and report new results on combining fluorescence localisation microscopy (STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation microscopy provides the location and dynamics of fluorescently labelled podosome components, while the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy we combine iFluor-647, which has previously been shown to eliminate the need to change buffer between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live cell imaging.  相似文献   

17.
TIRF and STORM microscopy are super‐resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low‐cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non‐TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.

  相似文献   


18.
Synthetic oligodeoxyribonucleotides rangin from 11 to 37 nucleotides in length and with varying base compositions, prepared by both the phosphotriester and phosphite procedures, have been purified by ion-exchange high-performance liquid chromatography on Whatman Partisil 10/SAX columns using phosphate buffer gradients. The effects of different buffer systems on elution times and resolution have been evaluated. Oligomer composition and length had a marked effect on the resolution achieved. In general the use of formamide buffers gave the best results, particularly in the case of 2′-deoxyguanosine-rich sequences. These methods have also been successfully applied to the purification of mixtures of synthetic oligodeoxynucleotides.  相似文献   

19.
The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D), multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM), for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density.  相似文献   

20.
The agar gel method can be used to study direct dyes, for which paper can not be used because such dyes have a high affinity for the paper. A 1% gel made up with a buffer in the range of pH 9-4, of ionic strength 0.05, and spread on 8 × 10 cm lantern slides provides suitable conditions. Dyes to be tested are placed in 1.5 mm wells made in the agar and subjected to a current of 2.5 ma/cm width, at a potential of about 115 v. Separations, if any, occur in about 20 min. Mobility is affected by ionic strength; values above 0.05 may be less satisfactory by reducing mobility and allowing excessive diffusion of the dye. The method allows resolution of dyes whose molecular charges differ by only one unit. Photographic recording is sharp, since the gel is transparent. The method can be recommended as generally useful for studying both acid and direct dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号