首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus. Toll-like receptor 7 (TLR7) is involved in host innate immunity against pathogens, and its aberrant activation is linked to the development of systemic lupus erythematosus (SLE, also called "lupus"). Type I interferons (IFN) are apparently driving forces for lupus pathogenesis. Previously, we found that EBV latent membrane protein 1 (LMP1) primes cells for IFN production. In this report, the relationship among EBV LMP1, TLRs, and IFN production are examined. We find that TLR7 activation increases the expression of EBV LMP1, and IFN regulatory factor 7 (IRF7) is involved in the stimulation process. TLR7 activation did not induce IFNs from EBV-infected cells, but potentiates those cells for IFN production by TLR3 or TLR9 activation. In addition, we find that LMP1 and IFNs are co-expressed in the same cells in some lupus patients. Therefore, the aberrant activation of TLR7 might induce LMP1 expression and LMP1-expression cells may be producing IFNs in lupus patients. These results suggest EBV might be an exacerbating factor in some lupus patients via promoting IFN production.  相似文献   

2.
The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the stable expression and biological evaluation of an anti-CD20 biosimilar antibody. While rituximab is produced in fed-batch culture of recombinant Chinese hamster ovary (CHO) cells, our biosimilar antibody expression process consists of continuous culture of recombinant murine NS0 myeloma cells. The ability of the purified biosimilar antibody to recognize the CD20 molecule on human tumor cell lines, as well as on peripheral blood mononuclear cells from humans and primates, was demonstrated by flow cytometry. The biosimilar antibody induced complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and apoptosis on human cell lines with high expression of CD20. In addition, this antibody depleted CD20-positive B lymphocytes from peripheral blood in monkeys. These results indicate that the biological properties of the biosimilar antibody compare favorably with those of the innovator product, and that it should be evaluated in future clinical trials.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):488-496
The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the stable expression and biological evaluation of an anti-CD20 biosimilar antibody. While rituximab is produced in fed-batch culture of recombinant Chinese hamster ovary (CHO) cells, our biosimilar antibody expression process consists of continuous culture of recombinant murine NS0 myeloma cells. The ability of the purified biosimilar antibody to recognize the CD20 molecule on human tumor cell lines, as well as on peripheral blood mononuclear cells from humans and primates, was demonstrated by flow cytometry. The biosimilar antibody induced complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and apoptosis on human cell lines with high expression of CD20. In addition, this antibody depleted CD20-positive B lymphocytes from peripheral blood in monkeys. These results indicate that the biological properties of the biosimilar antibody compare favorably with those of the innovator product, and that it should be evaluated in future clinical trials.  相似文献   

4.
Type I IFN protects against murine lupus   总被引:1,自引:0,他引:1  
Both the type I (IFN-alpha beta) and type II (IFN-gamma) IFNs have been heavily implicated in the pathogenesis of systemic lupus erythematosus. To test the relative roles of these systems, congenic lupus-prone MRL/CD95(lpr/lpr) (MRL/lpr) mice lacking the type I IFN receptor (IFN-RI), type II IFN receptor (IFN-RII), or both, were derived. As expected, deficiency for IFN-RII protected MRL/lpr mice from the development of significant autoimmune-associated lymphadenopathy, autoantibodies, and renal disease. However, deficiency for the IFN-RI surprisingly worsened lymphoproliferation, autoantibody production, and end organ disease; animals doubly deficient for IFN-RI and IFN-RII developed an autoimmune phenotype intermediate between wild-type and IFN-RII-deficient animals, all correlating with an ability of type I IFN to suppress MRL B cell activation. Thus, type I IFNs protect against both the humoral and end organ autoimmune syndrome of MRL/lpr mice, independent of IFN-gamma. These findings warrant caution in the use of type I IFN antagonists in the treatment of autoimmune diseases and suggest further investigation into the interplay between the types I and II IFNs during the ontogeny of pathogenic autoantibodies.  相似文献   

5.
Type I interferons (IFNs) are a family of cytokines involved in the defense against viral infections that play a key role in the activation of both the innate and adaptive immune system. IFNs both directly and indirectly enhance the capacity of B lymphocytes to respond to viral challenge and produce cytotoxic and neutralizing antibodies. However, prolonged type I IFN exposure is not always beneficial to the host. If not regulated properly IFN can drive autoantibody production as well as other parameters of systemic autoimmune disease. Type I IFNs impact B-cell function through a variety of mechanisms, including effects on receptor engagement, Toll-like receptor expression, cell migration, antigen presentation, cytokine responsiveness, cytokine production, survival, differentiation and class-switch recombination. Type I IFNs are also cytotoxic for a variety of cell types and thereby contribute to the accumulation of cell debris that serves as a potential source for autoantigens. Type I IFN engagement of a variety of accessory cells further promotes B-cell survival and activation, as exemplified by the capacity of type I IFNs to increase the level of B-cell survival factors, such as B lymphocyte stimulator, produced by dendritic cells. Therefore, it is not surprising that the loss of expression of the type I IFN receptor can have dramatic effects on the production of autoantibodies and on the clinical features of systemic autoimmune diseases such as systemic lupus erythematosus.  相似文献   

6.

Introduction

Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IκB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.

Methods

We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-α production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-α production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.

Results

Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-α production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-α production, more strongly inhibited IFN-α production than TNF-α production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-α production by human PBMCs induced by the SLE serum and the in vivo serum IFN-α level induced by injecting mice with poly U.

Conclusions

These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.  相似文献   

7.

Introduction

Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IκB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.

Methods

We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-α production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-α production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.

Results

Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-α production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-α production, more strongly inhibited IFN-α production than TNF-α production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-α production by human PBMCs induced by the SLE serum and the in vivo serum IFN-α level induced by injecting mice with poly U.

Conclusions

These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.  相似文献   

8.
9.
Interleukin-10 is a predominantly anti-inflammatory cytokine that inhibits macrophage and dendritic cell function, but can acquire proinflammatory activity during immune responses. We investigated whether type I IFNs, which are elevated during infections and in autoimmune diseases, modulate the activity of IL-10. Priming of primary human macrophages with low concentrations of IFN-alpha diminished the ability of IL-10 to suppress TNF-alpha production. IFN-alpha conferred a proinflammatory gain of function on IL-10, leading to IL-10 activation of expression of IFN-gamma-inducible, STAT1-dependent genes such as IFN regulatory factor 1, IFN-gamma-inducible protein-10 (CXCL10), and monokine induced by IFN-gamma (CXCL9). IFN-alpha priming resulted in greatly enhanced STAT1 activation in response to IL-10, and STAT1 was required for IL-10 activation of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma expression in IFN-alpha-primed cells. In control, unprimed cells, IL-10 activation of STAT1 was suppressed by constitutive activity of protein kinase C and Src homology 2 domain-containing phosphatase 1. These results demonstrate that type I IFNs regulate the balance between IL-10 anti- and proinflammatory activity, and provide insight into molecular mechanisms that regulate IL-10 function. Gain of IL-10 proinflammatory functions may contribute to its pathogenic role in autoimmune diseases characterized by elevated type I IFN levels, such as systemic lupus erythematosus.  相似文献   

10.
11.
《Cytokine》2015,74(2):326-334
Cutaneous lupus erythematosus (CLE) is an inflammatory disease with a broad range of cutaneous manifestations that may be accompanied by systemic symptoms. The pathogenesis of CLE is complex, multifactorial and incompletely defined. Below we review the current understanding of the cytokines involved in these processes. Ultraviolet (UV) light plays a central role in the pathogenesis of CLE, triggering keratinocyte apoptosis, transport of nucleoprotein autoantigens to the keratinocyte cell surface and the release of inflammatory cytokines (including interferons (IFNs), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, IL-10 and IL-17). Increased IFN, particularly type I IFN, is central to the development of CLE lesions. In CLE, type I IFN is produced in response to nuclear antigens, immune complexes and UV light. Type I IFN increases leukocyte recruitment to the skin via inflammatory cytokines, chemokines, and adhesion molecules, thereby inducing a cycle of cutaneous inflammation. Increased TNFα in CLE may also cause inflammation. However, decreasing TNFα with an anti-TNFα agent can induce CLE-like lesions. TNFα regulates B cells, increases the production of inflammatory molecules and inhibits the production of IFN-α. An increase in the inflammatory cytokines IL-1, IL-6, IL-10, IL-17 and IL-18 and a decrease in the anti-inflammatory cytokine IL-12 also act to amplify inflammation in CLE. Specific gene mutations may increase the levels of these inflammatory cytokines in some CLE patients. New drugs targeting various aspects of these cytokine pathways are being developed to treat CLE and systemic lupus erythematosus (SLE).  相似文献   

12.
Interferons and interferon inhibitory activity in disease and therapy   总被引:2,自引:0,他引:2  
Interferon (IFN) resistance is an important factor in the pathophysiology of neoplastic disorders, certain viral infections (e.g., AIDS), and autoimmune diseases (e.g., lupus erythematosus and Wegner's granulomatosis). In addition, in some of these disorders, there is also decreased ability to produce IFNs. The capacity of viruses and neoplastic processes to interfere with the IFN system are thought to represent a "virus-against-host" or "cancer-against-host" defense mechanism. Four resistance factors have been identified: 1) release of free IFN-alpha/beta type 1 receptors into the circulation that, at appropriate concentrations, capture and inactivate IFNs; 2) a new IFN inhibitory protein has been isolated and its chemical structure is under study; 3) prostaglandin E2, which is produced by certain tumor cells, inhibits IFN production; and 4) high levels of cAMP phosphodiesterases present, for example in certain tumor cells, reduces cAMP, an important second messenger in IFN synthesis. Studies are under way to reverse these inhibitory effects and to increase endogenous interferon production.  相似文献   

13.
It is generally accepted that human Th cells express the surface glycoproteins CD4 and alpha/beta-chain heterodimer of the TCR whereas cytotoxic/suppressor cells are usually CD8+ and alpha/beta TCR+. Another minor set of T cells found in the periphery are CD4-/CD8- (double negative) and express the gamma/delta TCR; these cells can manifest MHC-restricted or nonrestricted cytotoxicity but no helper function. Herein we describe the existence of an unusual Th population in the peripheral blood of humans that are CD4-/CD8- and alpha/beta TCR+. These double-negative Th were markedly expanded in patients with the autoimmune disease SLE and along with CD4+ Th, they induced production of the pathogenic variety of anti-DNA autoantibodies that are IgG in class and cationic in charge. The cationic anti-DNA antibodies induced by the Th were markedly restricted in spectrotype indicating that an oligoclonal population of B cells were committed to produce the pathogenic autoantibodies in active lupus. IL-2-dependent T cell lines were also derived from the patients with active lupus nephritis but the majority of those T cell lines lacked pathogenic autoantibody-inducing capability. Only 4 out of 42 T cell lines from a lupus patient could induce the production of cationic IgG class anti-DNA autoantibodies. The phenotypes of the pathogenic autoantibody-inducing Th lines were similar to the Th subsets: CD4+, alpha/beta TCR+ or CD4-/CD8-, alpha/beta TCR+. These studies suggest that production of pathogenic autoantibodies in human lupus is mediated by mechanisms that are distinct from the generalized, nonspecific polyclonal B cell hyperactivity that leads to excessive production of natural autoantibodies.  相似文献   

14.
15.
Anti‐CD20 murine or chimeric antibodies (Abs) have been used to treat non‐Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti‐CD20 Abs demonstrated to be effective in inducing regression of B‐cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti‐CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL‐2‐based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti‐CD20‐human interleukin‐2 (hIL‐2) immunocytokine (2B8‐Fc‐hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv‐Fc‐engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS‐PAGE and gel filtration. Purification yields using protein‐A affinity chromatography were in the range of 15–20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant‐type glycosylation. 2B8‐Fc‐hIL2 and the cognate 2B8‐Fc antibody, devoid of hIL‐2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody‐dependent cell‐mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8‐Fc‐hIL2, IL‐2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.  相似文献   

16.
Interferons (IFNs) play a major role in the control of hepatitis B virus (HBV), whether as endogenous cytokines limiting the spread of the virus during the acute phase of the infection or as drugs for the treatment of its chronic phase. However, the mechanism by which IFNs inhibit HBV replication has so far remained elusive. Here, we show that type I and II IFN treatment of human hepatocytes induces the production of APOBEC3G (A3G) and, to a lesser extent, that of APOBEC3F (A3F) and APOBEC3B (A3B) but not that of two other cytidine deaminases also endowed with anti-HBV activity, activation-induced cytidine deaminase (AID), and APOBEC1. Most importantly, we reveal that blocking A3B, A3F, and A3G by combining RNA interference and the virion infectivity factor (Vif) protein of human immunodeficiency virus does not abrogate the inhibitory effect of IFNs on HBV. We conclude that these cytidine deaminases are not essential effectors of IFN in its action against this pathogen.  相似文献   

17.
Innate immune receptors that recognize nucleic acids, such as TLRs and RNA helicases, are potent activators of innate immunity that have been implicated in the induction and exacerbation of autoimmunity and inflammatory arthritis. Polyriboinosine-polyribocytidylic acid sodium salt (poly(IC)) is a mimic of dsRNA and viral infection that activates TLR3 and the RNA helicases retinoic acid-induced gene-1 and melanoma differentiation-associated gene-5, and strongly induces type I IFN production. We analyzed the effects of systemic delivery of poly(IC) on the inflammatory effector phase of arthritis using the collagen Ab-induced and KRN TCR-transgenic mouse serum-induced models of immune complex-mediated experimental arthritis. Surprisingly, poly(IC) suppressed arthritis, and suppression was dependent on type I IFNs that inhibited synovial cell proliferation and inflammatory cytokine production. Administration of exogenous type I IFNs was sufficient to suppress arthritis. These results suggest a regulatory role for innate immune receptors for dsRNA in modulating inflammatory arthritis and provide additional support for an anti-inflammatory function of type I IFNs in arthritis that directly contrasts with a pathogenic role in promoting autoimmunity in systemic lupus.  相似文献   

18.
Treatment of cell lines with type I IFNs activates the formation of IFN-stimulated gene factor 3 (STAT1/STAT2/IFN regulatory factor-9), which induces the expression of many genes. To study this response in primary cells, we treated fresh human blood with IFN-β and used flow cytometry to analyze phosphorylated STAT1, STAT3, and STAT5 in CD4(+) and CD8(+) T cells, B cells, and monocytes. The activation of STAT1 was remarkably different among these leukocyte subsets. In contrast to monocytes and CD4(+) and CD8(+) T cells, few B cells activated STAT1 in response to IFN-β, a finding that could not be explained by decreased levels of IFNAR2 or STAT1 or enhanced levels of suppressor of cytokine signaling 1 or relevant protein tyrosine phosphatases in B cells. Microarray and real-time PCR analyses revealed the induction of STAT1-dependent proapoptotic mRNAs in monocytes but not in B cells. These data show that IFN-stimulated gene factor 3 or STAT1 homodimers are not the main activators of gene expression in primary B cells of healthy humans. Notably, in B cells and, especially in CD4(+) T cells, IFN-β activated STAT5 in addition to STAT3, with biological effects often opposite from those driven by activated STAT1. These data help to explain why IFN-β increases the survival of primary human B cells and CD4(+) T cells but enhances the apoptosis of monocytes, as well as to understand how leukocyte subsets are differentially affected by endogenous type I IFNs during viral or bacterial infections and by type I IFN treatment of patients with multiple sclerosis, hepatitis, or cancer.  相似文献   

19.
Interferon (IFN)-alpha and IFN-beta ("type I" IFNs), but not IFN-gamma reduced phytohemagglutinin- or pokeweed mitogen (PWM)-induced proliferation in cultures of human mononuclear leukocytes. Proliferation induced by specific antigens (tuberculin PPD or tetanus toxoid) or by exogenous interleukin 2 (IL-2) was strongly inhibited by type I IFNs and, to a lesser extent, by IFN-gamma as well. Inhibition of proliferation in mitogen-stimulated cultures was not due to a reduced production of IL-2 or to an inhibition of IL-2 receptor expression. Type I IFNs inhibited immunoglobulin (Ig) production in PWM-stimulated unseparated mononuclear cells, whereas IFN-gamma enhanced Ig production in such cultures. In cultures of purified B cells type I IFNs caused a stimulation of Ig production and this B-cell differentiation factor (BCDF)-like activity of IFNs was synergistically enhanced in the presence of IL-2. IFN-gamma produced less BCDF-like activity than type I IFNs. These results show that in some instances type I IFNs can be more potent in affecting functions of cells of the immune system than IFN-gamma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号