首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions.  相似文献   

2.
The enterocyte expresses two fatty acid-binding proteins (FABP), intestinal FABP (IFABP; FABP2) and liver FABP (LFABP; FABP1). LFABP is also expressed in liver. Despite ligand transport and binding differences, it has remained uncertain whether these intestinally coexpressed proteins, which both bind long chain fatty acids (FA), are functionally distinct. Here, we directly compared IFABP−/− and LFABP−/− mice fed high fat diets containing long chain saturated or unsaturated fatty acids, reasoning that providing an abundance of dietary lipid would reveal unique functional properties. The results showed that mucosal lipid metabolism was indeed differentially modified, with significant decreases in FA incorporation into triacylglycerol (TG) relative to phospholipid (PL) in IFABP−/− mice, whereas LFABP−/− mice had reduced monoacylglycerol incorporation in TG relative to PL, as well as reduced FA oxidation. Interestingly, striking differences were found in whole body energy homeostasis; LFABP−/− mice fed high fat diets became obese relative to WT, whereas IFABP−/− mice displayed an opposite, lean phenotype. Fuel utilization followed adiposity, with LFABP−/− mice preferentially utilizing lipids, and IFABP−/− mice preferentially metabolizing carbohydrate for energy production. Changes in body weight and fat may arise, in part, from altered food intake; mucosal levels of the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamine were elevated in LFABP−/−, perhaps contributing to increased energy intake. This direct comparison provides evidence that LFABP and IFABP have distinct roles in intestinal lipid metabolism; differential intracellular functions in intestine and in liver, for LFABP−/− mice, result in divergent downstream effects at the systemic level.  相似文献   

3.
Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain “activating” fatty acids induce the protein''s cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5''s translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling.  相似文献   

4.
5.
We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP.  相似文献   

6.
7.
目的:视黄醇结合蛋白4(RBP4)在非酒精性肝脂肪变模型大鼠中的表达情况,以探求其在疾病发生、发展中的意义。方法:40只wistar大鼠随机分为对照组和造模组,分析各组在2、4、6、8周4个时间点血清ALT、AST、TG、TC的变化及肝组织RBP4的表达情况。结果:随着造模时间延长,造模组大鼠肝脏脂肪变越来越明显,血清ALT、AST、TG、TC逐渐升高(p〈0.05)。造模组肝组织RBP4的mRNA的表达随造模时间逐渐增强;造模组免疫组化结果发现,RBP4的表达随造模时间逐渐增强(p〈0.05)。结论:在大鼠非酒精性脂肪肝模型中,RBP4的表达随造模时间延长而增加,与同期对照组相比有统计学差异,因此RBP4可能作为一个敏感的指标反映非酒精性脂肪肝的发生及发展情况。  相似文献   

8.
目的:视黄醇结合蛋白4(RBP4)在非酒精性肝脂肪变模型大鼠中的表达情况,以探求其在疾病发生、发展中的意义。方法:40只wistar大鼠随机分为对照组和造模组,分析各组在2、4、6、8周4个时间点血清ALT、AST、TG、TC的变化及肝组织RBP4的表达情况。结果:随着造模时间延长,造模组大鼠肝脏脂肪变越来越明显,血清ALT、AST、TG、TC逐渐升高(p<0.05)。造模组肝组织RBP4的mRNA的表达随造模时间逐渐增强;造模组免疫组化结果发现,RBP4的表达随造模时间逐渐增强(p<0.05)。结论:在大鼠非酒精性脂肪肝模型中,RBP4的表达随造模时间延长而增加,与同期对照组相比有统计学差异,因此RBP4可能作为一个敏感的指标反映非酒精性脂肪肝的发生及发展情况。  相似文献   

9.
Abstract: Two fatty acid binding proteins (FABPs) were isolated from Swiss Webster mouse brains. Neither protein cross-reacted with antisera to recombinant liver L-FABP. One protein, designated brain H-FABP, migrated on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a single band at 14.5 kDa with pl 4.9. Brain H-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.02 and 0.5 µ M , respectively. Brain H-FABP cross-reacted with affinity-purified antisera to recombinant heart H-FABP. The second protein, mouse brain B-FABP, migrated on tricine SDS-PAGE gels as a doublet at 16.0 and 15.5 kDa with pl values of 4.5 and 4.7, respectively. Brain B-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.01 and 0.7 µ M , respectively. The brain B-FABP doublet was immunoreactive with affinity-purified antibodies against recombinant mouse brain B-FABP, but not with affinity-purified antibodies against heart H-FABP. [3H]Oleate competition binding indicated that the two brain FABPs had distinct ligand binding specificities. Both bound fatty acids, fatty acyl CoA, and lysophosphatidic acid. Although both preferentially bound unsaturated fatty acids, twofold differences in specific saturated fatty acid binding were observed. Brain B-FABP and brain H-FABP represented 0.1 and 0.01% of brain total cytosolic protein, respectively. In summary, mouse brain contains two native fatty acid binding proteins, brain H-FABP and brain B-FABP.  相似文献   

10.
Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In this study, we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full-length Angptl4, and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid > linoleic acid > linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence, and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a subnanomolar equilibrium dissociation constant (K(d)). The K(d) values for palmitic and myristic acid were in the nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp-38 residue that is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.  相似文献   

11.
Non‐alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet‐induced fatty liver disease. This study examines the effects of arsenite potentiated diet‐induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet‐only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.  相似文献   

12.
Penicillium marneffei is a dimorphic, pathogenic fungus in Southeast Asia that mostly afflicts immunocompromised individuals. As the only dimorphic member of the genus, it goes through a phase transition from a mold to yeast form, which is believed to be a requisite for its pathogenicity. Mp1p, a cell wall antigenic mannoprotein existing widely in yeast, hyphae, and conidia of the fungus, plays a vital role in host immune response during infection. To understand the function of Mp1p, we have determined the x-ray crystal structure of its ligand binding domain 2 (LBD2) to 1.3 Å. The structure reveals a dimer between the two molecules. The dimer interface forms a ligand binding cavity, in which electron density was observed for a palmitic acid molecule interacting with LBD2 indirectly through hydrogen bonding networks via two structural water molecules. Isothermal titration calorimetry experiments measured the ligand binding affinity (Kd) of Mp1p at the micromolar level. Mutations of ligand-binding residues, namely S313A and S332A, resulted in a 9-fold suppression of ligand binding affinity. Analytical ultracentrifugation assays demonstrated that both LBD2 and Mp1p are mostly monomeric in vitro, no matter with or without ligand, and our dimeric crystal structure of LBD2 might be the result of crystal packing. Based on the conformation of the ligand-binding pocket in the dimer structure, a model for the closed, monomeric form of LBD2 is proposed. Further structural analysis indicated the biological importance of fatty acid binding of Mp1p for the survival and pathogenicity of the conditional pathogen.  相似文献   

13.
Native cytosol requires ATP to initiate the budding of the pre-chylomicron transport vesicle from intestinal endoplasmic reticulum (ER). When FABP1 alone is used, no ATP is needed. Here, we test the hypothesis that in native cytosol FABP1 is present in a multiprotein complex that prevents FABP1 binding to the ER unless the complex is phosphorylated. We found on chromatography of native intestinal cytosol over a Sephacryl S-100 HR column that FABP1 (14 kDa) eluted in a volume suggesting a 75-kDa protein complex that contained four proteins on an anti-FABP1 antibody pulldown. The FABP1-containing column fractions were chromatographed over an anti-FABP1 antibody adsorption column. Proteins co-eluted from the column were identified as FABP1, Sar1b, Sec13, and small VCP/p97-interactive protein by immunoblot, LC-MS/MS, and MALDI-TOF. The four proteins of the complex had a total mass of 77 kDa and migrated on native PAGE at 75 kDa. When the complex was incubated with intestinal ER, there was no increase in FABP1-ER binding. However, when the complex member Sar1b was phosphorylated by PKCζ and ATP, the complex completely disassembled into its component proteins that migrated at their monomer molecular weight on native PAGE. FABP1, freed from the complex, was now able to bind to intestinal ER and generate the pre-chylomicron transport vesicle (PCTV). No increase in ER binding or PCTV generation was observed in the absence of PKCζ or ATP. We conclude that phosphorylation of Sar1b disrupts the FABP1-containing four-membered 75-kDa protein complex in cytosol enabling it to bind to the ER and generate PCTV.  相似文献   

14.
Ceramide transport from the endoplasmic reticulum to the Golgi apparatus is crucial in sphingolipid biosynthesis, and the process relies on the ceramide trafficking protein (CERT), which contains pleckstrin homology (PH) and StAR-related lipid transfer domains. The CERT PH domain specifically recognizes phosphatidylinositol 4-monophosphate (PtdIns(4)P), a characteristic phosphoinositide in the Golgi membrane, and is indispensable for the endoplasmic reticulum-to-Golgi transport of ceramide by CERT. In this study, we determined the three-dimensional structure of the CERT PH domain by using solution NMR techniques. The structure revealed the presence of a characteristic basic groove near the canonical PtdIns(4)P recognition site. An extensive interaction study using NMR and other biophysical techniques revealed that the basic groove coordinates the CERT PH domain for efficient PtdIns(4)P recognition and localization in the Golgi apparatus. The notion was also supported by Golgi mislocalization of the CERT mutants in living cells. The distinctive binding modes reflect the functions of PH domains, as the basic groove is conserved only in the PH domains involved with the PtdIns(4)P-dependent lipid transport activity but not in those with the signal transduction activity.  相似文献   

15.
心型脂肪酸结合蛋白(heart fatty acid binding protein, H-FABP)的水平与影响肉质性状的肌内脂肪含量有关,鱼类H-FABP的表达水平对其肌内脂肪含量是否相关仍未见报道.本研究获得齐口裂腹鱼和鲤鱼心脏型脂肪酸结合蛋白基因序列,利用半定量RT-PCR分析其表达特性并测定肌内脂肪含量,比较H-FABP基因在不同生活环境的2种鲤科鱼肌内脂肪沉积中的作用.结果显示,齐口裂腹鱼和鲤鱼H-FABP基因的ORF为402 bp,编码133个氨基酸,它们的氨基酸序列相同,与人、猪、小鼠、斑马鱼、大西洋鲑、虹鳟等的同源性为71.3%~ 90%;H-FABP基因在2种鲤科鱼的心、肌肉、脂肪、肝、脑、脾、肾和鳃等组织中均有表达,肝中的表达量显著高于其它组织(P<0.05),H-FABP基因的肌肉表达谱在齐口裂腹鱼和鲤鱼中存在明显差异:齐口裂腹鱼中的表达随生长发育呈上升趋势,在大体重鱼(500 g)中的表达显著高于小体重鱼(P<0.05),其表达与肌内脂肪含量呈显著正相关(R=0.370,P<0.05);H-FABP基因在鲤鱼生长发育中呈下降趋势,而小体重鱼(50~60 g)中的表达显著高于其它大体重鱼(P<0.05),其表达与肌内脂肪含量呈显著负相关(R=-7.083,P<0.01).据此推测,齐口裂腹鱼和鲤鱼肌肉组织H-FABP基因表达与肌内脂肪关联性的差异可能与2种鱼的生活环境不同有关.  相似文献   

16.
ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.  相似文献   

17.
Sterol carrier protein-2 (SCP-2) is a nonspecific lipid-binding protein expressed ubiquitously in most organisms. Knockdown of SCP-2 expression in mosquitoes has been shown to result in high mortality in developing adults and significantly lowered fertility. Thus, it is of interest to determine the structure of mosquito SCP-2 and to identify its mechanism of lipid binding. We report here high quality three-dimensional solution structures of SCP-2 from Aedes aegypti determined by NMR spectroscopy in its ligand-free state (AeSCP-2) and in complex with palmitate. Both structures have a similar mixed α/β fold consisting of a five-stranded β-sheet and four α-helices arranged on one side of the β-sheet. Ligand-free AeSCP-2 exhibited regions of structural heterogeneity, as evidenced by multiple two-dimensional 15N heteronuclear single-quantum coherence peaks for certain amino acids; this heterogeneity disappeared upon complex formation with palmitate. The binding of palmitate to AeSCP-2 was found to decrease the backbone mobility of the protein but not to alter its secondary structure. Complex formation is accompanied by chemical shift differences and a loss of mobility for residues in the loop between helix αI and strand βA. The structural differences between the αI and βA of the mosquito and the vertebrate SCP-2s may explain the differential specificity (insect versus vertebrate) of chemical inhibitors of the mosquito SCP-2.  相似文献   

18.
Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-interrupted n-3 or n-6 grouping. The fluorescent VLC-PUFAs mimicked many properties of their native nonfluorescent counterparts, including uptake, distribution, and metabolism in living cells. The unesterified fluorescent VLC-PUFAs distributed either equally in nuclei versus cytoplasm (22-carbon n-3 VLC-PUFA) or preferentially to cytoplasm (20-carbon n-3 and n-6 VLC-PUFAs). L-FABP bound fluorescent VLC-PUFA with affinity and specificity similar to their nonfluorescent natural counterparts. Regarding n-3 and n-6 VLC-PUFA, L-FABP expression enhanced uptake into the cell and cytoplasm, selectively altered the pattern of fluorescent n-6 and n-3 VLC-PUFA distribution in cytoplasm versus nuclei, and preferentially distributed fluorescent VLC-PUFA into nucleoplasm versus nuclear envelope, especially for the 22-carbon n-3 VLC-PUFA, correlating with its high binding by L-FABP. Multiphoton laser scanning microscopy data showed for the first time VLC-PUFA in nuclei of living cells and suggested a model, whereby L-FABP facilitated VLC-PUFA targeting to nuclei by enhancing VLC-PUFA uptake and distribution into the cytoplasm and nucleoplasm.  相似文献   

19.
Abstract: Activation of phospholipase D (PLD) is involved in receptor-mediated signal transduction responses. Signaling from PLD to a downstream molecule(s) appears to be mediated by the PLD product phosphatidic acid (PA). A target molecule(s) of PA, however, has not yet been identified. The present study sought to define such a target molecule(s) of PA. In bovine brain cytosol, proteins with apparent molecular weights of 29,000 (p29) and 32,000 (p32) were prominently phosphorylated in the presence of PA, but not in its absence, indicating that there is a PA-regulated protein kinase (PARK) in bovine brain that phosphorylates p29 and p32. One of these substrates, p29, was purified to near homogeneity. Its partial amino acid sequence was determined and found to be identical to that of a known brain-specific 25-kDa protein (p25). The purified p29 was also readily recognized by and immunoprecipitated with an anti-p25 antibody. These results suggest that p29 is very similar to or identical with p25. Using the purified p29 as a substrate, PARK was purified to near homogeneity. The purified PARK had an apparent molecular weight of 80,000, was strongly recognized by an anti-protein kinase C (PKC)α antibody, and was activated by phosphatidylserine (PS) as well as PA. The PA- and PS-stimulated PARK activity was extremely augmented by the presence of 1 µM free Ca2+. In the presence of 1 mM EGTA, phorbol 12-myristate 13-acetate activated PARK synergistically with PA or PS. Similar results were obtained with the purified recombinant PKCα. From these results, it is suggested that the PARK activity purified might be attributed to PKCα. In p25-depleted bovine brain cytosol, which was prepared by treatment of bovine brain cytosol with the anti-p25 antibody, PA-dependent phosphorylation of p29, but not p32, was almost completely eliminated. When PKCα in bovine brain cytosol was depleted by its precipitation with the anti-PKCα antibody, neither p29 nor p32 in this PKCα-depleted cytosol was phosphorylated in the presence of PA. These results indicate that in bovine brain cytosol PA activates PKCα, which, in turn, phosphorylates p29, which may be identical with p25.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号