首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy of ultrathin cryosections, scanning electron microscopy of freeze-fractured samples, and fluorescent in situ hybridization. Biofilms were evident and most prominent in the myocardium, and were associated with a large amount of amorphous extracellular material. Furthermore, Pasteurella multocida was often cultured with H. somni from heart and lung samples. Transposon mutagenesis of H. somni strain 2336 resulted in the generation of mutants that expressed more or less biofilm than the parent strain. Six mutants deficient in biofilm formation had an insertion in the gene encoding for a homolog of filamentous haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation can be identified by transposon mutagenesis.  相似文献   

2.
Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.  相似文献   

3.
Biofilm formation by Pseudomonas aeruginosa is hypothesized to follow a developmental pattern initiated by attachment to a surface followed by microcolony formation and mature biofilm development. Swimming and twitching motility are important for attachment and biofilm development in P. aeruginosa. However, it is clear that many P. aeruginosa strains lacking swimming motility exist as biofilms in the lungs of cystic fibrosis patients. Consequently, we have developed a dynamic attachment assay to identify motility-independent attachment-defective mutants. Using transposon mutagenesis, we identified 14 novel dynamic attachment-deficient (dad) mutants including four mutants specific to dynamic assay conditions (dad specific). Two of the dad-specific mutants contain insertions in genes involved in sensing and responding to external stimuli, implying a significant impact of external factors on the biofilm developmental pathway. Observations of initial attachment and long-term biofilm formation characterized our dad mutants into two distinct classes: biofilm delayed and biofilm impaired. Biofilm-delayed mutants form wild-type biofilms but are delayed at least 24 h compared with the wild type, whereas biofilm-impaired mutants never form wild-type biofilms in our assays. We propose a dynamic model for attachment and biofilm formation in P. aeruginosa including these two classes.  相似文献   

4.
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. We compared 48-h biofilm formation by N. meningitidis serogroup B strains NMB, MC58, C311 and isogenic mutants defective in capsule formation on SV-40 transformed human bronchial epithelial (HBE) cells in a flow cell. We demonstrated that strains NMB and NMB siaA-D were defective in biofilm formation over glass, and there was a partial rescue of biofilm growth for strain NMB on collagen-coated coverslips at 48 h. We demonstrated all three serogroup B strains form biofilms of statistically equivalent average height on HBE cells as their isogenic capsular mutants. Strain NMB also formed a biofilm of statistically equivalent biomass as the NMB siaA-D mutant on HBE cells at 6 and 48 h. These biofilms are significantly larger than biofilms formed over glass or collagen. Verification that strain NMB expressed capsule in biofilms on HBE cells was demonstrated by staining with 2.2.B, a monoclonal antibody with specificity for the serogroup B capsule. ELISA analysis demonstrated that strains MC58 and C311 also produced capsules during biofilm growth. These findings suggest that encapsulated meningococci can form biofilms on epithelial cells suggesting that biofilm formation may play a role in nasopharyngeal colonization.  相似文献   

5.
H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.  相似文献   

6.
The biofilm mode of growth can lead to diversification of the bacterial population by promoting the emergence of variants. Here we report the identification and characterization of two major subpopulations of morphological variants arising in biofilms of S. aureus. One of these lacked pigmentation (termed white variants; WVs), whilst the other formed colonies on agar that were larger and paler than the parental strain (termed large pale variants; LPVs). WVs were unable to form biofilms, and exhibited increased proteolysis and haemolysis; all phenotypes attributable to loss-of-function mutations identified in the gene encoding the alternative sigma factor, sigB. For LPVs, no differences in biofilm forming capacity or proteolysis were observed compared with the parental strain. Genetic analysis of LPVs revealed that they had undergone mutation in the accessory gene regulator system (agrA), and deficiency in agr was confirmed by demonstrating loss of both colony spreading and haemolytic activity. The observation that S. aureus biofilms elaborate large subpopulations of sigB and agr mutants, both genotypes that have independently been shown to be of importance in staphylococcal disease, has implications for our understanding of staphylococcal infections involving a biofilm component.  相似文献   

7.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

8.
Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC?≤?2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC?≥?8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.  相似文献   

9.
Biofilms formed by the human pathogen Listeria monocytogenes in food-processing environments can be a potential source of contamination. In this study, we investigated the ability of L. monocytogenes wild type and its laboratory-derived isogenic mutants in cwhA, prfA, agrA, flaA, degU, ami and sigB to adhere to and form biofilms on abiotic surfaces. The results suggest that inactivation of the two component regulatory system degU completely abolished biofilm formation, while inactivation of the flagellar gene flaA, two component response regulator agrA and the autolysin-adhesin gene ami lead to severe impairment of initial attachment and the subsequent development of a mature biofilm by L. monocytogenes. Mutants in the global regulator of virulence prfA and the alternative sigma factor sigB were unaffected and formed biofilms similar to wild type L. monocytogenes.  相似文献   

10.
Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm.  相似文献   

11.
12.
Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism.  相似文献   

13.
Bacteria can elaborate complex patterns of development that are dictated by temporally ordered patterns of gene expression, typically under the control of a master regulatory pathway. For some processes, such as biofilm development, regulators that initiate the process have been identified but subsequent phenotypic changes such as stress tolerance do not seem to be under the control of these same regulators. A hallmark feature of biofilms is growth within a self-produced extracellular matrix. In this study we used metabolomics to compare Salmonella cells in rdar colony biofilms to isogenic csgD deletion mutants that do not produce an extracellular matrix. The two populations show distinct metabolite profiles. Even though CsgD controls only extracellular matrix production, metabolite signatures associated with cellular adaptations associated with stress tolerances were present in the wild type but not the mutant cells. To further explore these differences we examine the temporal gene expression of genes implicated in biofilm development and stress adaptations. In wild type cells, genes involved in a metabolic shift to gluconeogenesis and various stress-resistance pathways exhibited an ordered expression profile timed with multicellular development even though they are not CsgD regulated. In csgD mutant cells, the ordered expression was lost. We conclude that the induction of these pathways results from production of, and growth within, a self produced matrix rather than elaboration of a defined genetic program. These results predict that common physiological properties of biofilms are induced independently of regulatory pathways that initiate biofilm formation.  相似文献   

14.
Agrobacterium tumefaciens can adhere to plant tissues and abiotic surfaces and forms biofilms. Cell surface appendages called pili play an important role in adhesion and biofilm formation in diverse bacterial systems. The A. tumefaciens C58 genome sequence revealed the presence of the ctpABCDEFGHI genes (cluster of type IV pili; Atu0216 to Atu0224), homologous to tad-type pilus systems from several bacteria, including Aggregatibacter actinomycetemcomitans and Caulobacter crescentus. These systems fall into the type IVb pilus group, which can function in bacterial adhesion. Transmission electron microscopy of A. tumefaciens revealed the presence of filaments, significantly thinner than flagella and often bundled, associated with cell surfaces and shed into the external milieu. In-frame deletion mutations of all of the ctp genes, with the exception of ctpF, resulted in nonpiliated derivatives. Mutations in ctpA (a pilin homologue), ctpB, and ctpG decreased early attachment and biofilm formation. The adherence of the ctpA mutant could be restored by ectopic expression of the paralogous pilA gene. The ΔctpA ΔpilA double pilin mutant displayed a diminished biovolume and lower biofilm height than the wild type under flowing conditions. Surprisingly, however, the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants formed normal biofilms and showed enhanced reversible attachment. In-frame deletion of the ctpA pilin gene in the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants caused the same attachment-deficient phenotype as the ctpA single mutant. Collectively, these findings indicate that the ctp locus is involved in pilus assembly and that nonpiliated mutants, which retain the CtpA pilin, are proficient in attachment and adherence.  相似文献   

15.
The thickness and antigenic properties of biofilms produced by Azospirillum brasilense Sp245 and its mutants deficient in the synthesis of lipopolysaccharides (Lps) and calcofluor-binding polysaccharides (CBPS) at the interface between water and hydrophilic or hydrophobic solid surfaces were compared. The mutants deficient in acidic LpsI synthesis produce thicker biofilms on hydrophilic surfaces. Biofilms produced on hydrophobic surfaces by bacteria that are unable to synthesize CBPS are less pronounced. Defects in CBPS production in Azospirillum mutants with impaired flagellar motility can cause adverse effects on the cell ability to attach to hydrophobic and hydrophilic surfaces. The loss of the neutral LpsII antigen by the mutants capable of producing CBPS does not affect their behavior on hydrophobic surfaces, which is probably due to the compensatory increase in the total polysaccharide production. The fundamental change in the Lps structure correlates with the activation of biofilm formation by the relevant mutants on hydrophilic and hydrophobic surfaces.  相似文献   

16.
Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.  相似文献   

17.
As all bacteria studied to date, the gastric pathogen Helicobacter pylori has an alternate lifestyle as a biofilm. H. pylori forms biofilms on glass surfaces at the air-liquid interface in stationary or shaking batch cultures. By light microscopy, we have observed attachment of individual, spiral H. pylori to glass surfaces, followed by division to form microcolonies, merging of individual microcolonies, and growth in the third dimension. Scanning electron micrographs showed H. pylori arranged in a matrix on the glass with channels for nutrient flow, typical of other bacterial biofilms. To understand the importance of biofilms to the H. pylori life cycle, we tested the effect of mucin on biofilm formation. Our results showed that 10% mucin greatly increased the number of planktonic H. pylori while not affecting biofilm bacteria, resulting in a decline in percent adherence to the glass. This suggests that in the mucus-rich stomach, H. pylori planktonic growth is favored over biofilm formation. We also investigated the effect of specific mutations in several genes, including the quorum-sensing gene, luxS, and the cagE type IV secretion gene. Both of these mutants were found to form biofilms approximately twofold more efficiently than the wild type in both assays. These results indicate the relative importance of these genes to the production of biofilms by H. pylori and the selective enhancement of planktonic growth in the presence of gastric mucin.  相似文献   

18.
Although biofilm-based bioprocesses have been increasingly used in various applications, the long-term robust and efficient biofilm performance remains one of the main bottlenecks. In this study, we demonstrated that biofilm cohesiveness and performance of Shewanella oneidensis can be enhanced through disrupting putrescine biosynthesis. Through random transposon mutagenesis library screening, one hyperadherent mutant strain, CP2-1-S1, exhibiting an enhanced capability in biofilm formation, was obtained. Comparative analysis of the performance of biofilms formed by S. oneidensis MR-1 wild type (WT) and CP2-1-S1 in removing dichromate (Cr2O72−), i.e., Cr(VI), from the aqueous phase showed that, compared with the WT biofilms, CP2-1-S1 biofilms displayed a substantially lower rate of cell detachment upon exposure to Cr(VI), suggesting a higher cohesiveness of the mutant biofilms. In addition, the amount of Cr(III) immobilized by CP2-1-S1 biofilms was much larger, indicating an enhanced performance in Cr(VI) bioremediation. We further showed that speF, a putrescine biosynthesis gene, was disrupted in CP2-1-S1 and that the biofilm phenotypes could be restored by both genetic and chemical complementations. Our results also demonstrated an important role of putrescine in mediating matrix disassembly in S. oneidensis biofilms.  相似文献   

19.
20.
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号