首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Low phosphorus (P) availability is a major constraint to soybean growth and production. Developing P-efficient soybean varieties that can efficiently utilize native P and added P in the soils would be a sustainable and economical approach to soybean production.

Scope

This review summarizes the possible mechanisms for P efficiency and genetic strategies to improve P efficiency in soybean with examples from several case studies. It also highlights potential obstacles and depicts future perspectives in ‘root breeding’.

Conclusions

This review provides new insights into the mechanisms of P efficiency and breeding strategies for this trait in soybean. Root biology is a new frontier of plant biology. Substantial efforts are now focusing on increasing soybean P efficiency through ‘root breeding’. To advance this area, additional collaborations between plant breeders and physiologists, as well as applied and theoretical research are needed to develop more soybean varieties with enhanced P efficiency through root modification, which might contribute to reduced use of P fertilizers, expanding agriculture on low-P soils, and achieving more sustainable agriculture.  相似文献   

2.

Background and Scope

Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored.

Methods

Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants.

Key Results

The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium.

Conclusions

Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.  相似文献   

3.
Kemal Kazan 《Annals of botany》2013,112(9):1655-1665
  相似文献   

4.

Background and Aims

Autoregulation of nodulation is a long-distance shoot–root signalling regulatory system that regulates nodule meristem proliferation in legume plants. However, due to the intricacy and subtleness of the signalling nature in plants, molecular and biochemical details underlying mechanisms of autoregulation of nodulation remain largely unknown. The purpose of this study is to use functional–structural plant modelling to investigate the complexity of this signalling system. There are two major challenges to be met: modelling the 3D architecture of legume roots with nodulation and co-ordinating signalling-developmental processes with various rates.

Methods

Soybean (Glycine max) was chosen as the target legume. Its root system was observed to capture lateral root branching and nodule distribution patterns. L-studio, a software tool supporting context-sensitive L-system modelling, was used for the construction of the architectural model and integration with the internal signalling.

Key Results

A branching pattern with regular radial angles was found between soybean lateral roots, from which a root mapping method was developed to characterize the laterals. Nodules were mapped based on ‘nodulation section’ to reveal nodule distribution. A root elongation algorithm was then developed for simulation of root development. Based on the use of standard sub-modules, a synchronization algorithm was developed to co-ordinate multi-rate signalling and developmental processes.

Conclusions

The modelling methods developed here not only allow recreation of legume root architecture with lateral branching and nodulation details, but also enable parameterization of internal signalling to produce different regulation results. This provides the basis for using virtual experiments to help in investigating the signalling mechanisms at work.  相似文献   

5.

Backgrond and Aims

Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood.

Methods

Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils.

Key Results

Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype ‘TPRC2001-1’ had higher Al tolerance than the P-inefficient genotype ‘Fine-stem’ as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, ‘TPRC2001-1’, had superior ability to utilize phytate-P.

Conclusions

The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.Key words: Stylosanthes, phosphorus, P efficiency, organic P, Al toxicity, acid soil  相似文献   

6.

Background

Strigolactones (SLs) – a group of plant hormones and their derivatives – have been found to play a role in the regulation of root development, in addition to their role in suppression of lateral shoot branching: they alter root architecture and affect root-hair elongation, and SL signalling is necessary for the root response to low phosphate (Pi) conditions. These effects of SLs have been shown to be associated with differential activation of the auxin and ethylene signalling pathways.

Scope

The present review highlights recent findings on the activity of SLs as regulators of root development, in particular in response to low Pi stress, and discusses the different hormonal networks putatively acting with SLs in the root''s Pi response.

Conclusions

SLs are suggested to be key regulators of the adaptive responses to low Pi in the root by modulating the balance between auxin and ethylene signalling. Consequently, they impact different developmental programmes responsible for the changes in root system architecture under differential Pi supply.  相似文献   

7.
Arbuscular mycorrhizal fungi in alleviation of salt stress: a review   总被引:4,自引:0,他引:4  

Background

Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways.

Scope

This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress.

Conclusions

The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes.Key words: Arbuscular mycorrhizal fungi, salt stress, PIP, Na+/H+ antiporters, nutrient uptake, soil salinity  相似文献   

8.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

9.

Background and Aims

Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages.

Methods

Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness.

Key Results

Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles).

Conclusions

Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether mechanisms vary across ontogeny in consistent patterns.  相似文献   

10.
11.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   

12.

Background

The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors.

Scope and Conclusions

In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties.  相似文献   

13.
Jie Wu  Yan Guo 《Annals of botany》2014,114(4):841-851

Background and Aims

A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate.

Methods

An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture.

Key Results

Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone.

Conclusions

The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models.  相似文献   

14.

Background and Aims

Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature.

Methods

An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants.

Key Results

Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants.

Conclusions

These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.  相似文献   

15.

Background and Aims

The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formation in the RAM based on PIN-mediated auxin transport have been proposed to date: the reverse fountain and the reflected flow mechanisms.

Methods

The two mechanisms are combined here in in silico studies of auxin distribution in intact roots and roots cut into two pieces in the proximal meristem region. In parallel, corresponding experiments were performed in vivo using DR5::GFP Arabidopsis plants.

Key Results

The reverse fountain and the reflected flow mechanism naturally cooperate for RAM patterning and maintenance in intact root. Regeneration of the RAM in decapitated roots is provided by the reflected flow mechanism. In the excised root tips local auxin biosynthesis either alone or in cooperation with the reverse fountain enables RAM maintenance.

Conclusions

The efficiency of a dual-mechanism model in guiding biological experiments on RAM regeneration and maintenance is demonstrated. The model also allows estimation of the concentrations of auxin and PINs in root cells during development and under various treatments. The dual-mechanism model proposed here can be a powerful tool for the study of several different aspects of auxin function in root.  相似文献   

16.
Jones VA  Dolan L 《Annals of botany》2012,110(2):205-212

Background

Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively.

Scope

Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts.

Conclusions

A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.  相似文献   

17.
Tanimoto E 《Annals of botany》2012,110(2):373-381

Background

Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth.

Scope

This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control.

Conclusions

This paper reviews: (1) the breakthrough dose–response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender or thick axial organs.  相似文献   

18.

Background

We have limited understanding of root foraging responses when plants were simultaneously exposed to nutrient heterogeneity and competition, and our goal was to determine whether and how plants integrate information about nutrients and neighbors in root foraging processes.

Methodology/Principal Findings

The experiment was conducted in split-containers, wherein half of the roots of spruce (Picea asperata) seedlings were subjected to intraspecific root competition (the vegetated half), while the other half experienced no competition (the non-vegetated half). Experimental treatments included fertilization in the vegetated half (FV), the non-vegetated half (FNV), and both compartments (F), as well as no fertilization (NF). The root architecture indicators consisted of the number of root tips over the root surface (RTRS), the length percentage of diameter-based fine root subclasses to total fine root (SRLP), and the length percentage of each root order to total fine root (ROLP). The target plants used novel root foraging behaviors under different combinations of neighboring plant and localized fertilization. In addition, the significant increase in the RTRS of 0–0.2 mm fine roots after fertilization of the vegetated half alone and its significant decrease in fertilizer was applied throughout the plant clearly showed that plant root foraging behavior was regulated by local responses coupled with systemic control mechanisms.

Conclusions/Significance

We measured the root foraging ability for woody plants by means of root architecture indicators constructed by the roots possessing essential nutrient uptake ability (i.e., the first three root orders), and provided new evidence that plants integrate multiple forms of environmental information, such as nutrient status and neighboring competitors, in a non-additive manner during the root foraging process. The interplay between the responses of individual root modules (repetitive root units) to localized environmental signals and the systemic control of these responses may well account for the non-additive features of the root foraging process.  相似文献   

19.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

20.

Background and Aims

The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete–plant interaction at the tissue and cellular levels.

Methods

Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection.

Key Results

Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin.

Conclusions

Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant–microbe interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号