首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

2.
The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues > 45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (> 41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in the interprotomer space and document the link between D-loop interactions and F-actin stability.  相似文献   

3.
It has been postulated that the hydrophobic loop of actin (residues 262-274) swings out and inserts into the opposite strand in the filament, stabilizing the filament structure. Here, we analyzed the hydrophobic loop dynamics utilizing four mutants that have cysteine residues introduced at a single location along the yeast actin loop. Lateral, copper-catalyzed disulfide cross-linking of the mutant cysteine residues to the native C374 in the neighboring strand within the filament was fastest for S265C, followed by V266C, L267C, and then L269C. Site-directed spin labeling (SDSL) studies revealed that C265 lies closest to C374 within the filament, followed by C266, C267, and then C269. These results are not predicted by the Holmes extended loop model of F-actin. Furthermore, we find that disulfide cross-linking destroys L267C and L269C filaments; only small filaments are observed via electron microscopy. Conversely, phalloidin protects the L267C and L269C filaments and inhibits their disulfide cross-linking. Combined, our data indicate that, in solution, the loop resides predominantly in a "parked" position within the filament but is able to dynamically populate other conformational states which stabilize or destabilize the filament. Such states may be exploited within a cell by filament-stabilizing and -destabilizing factors.  相似文献   

4.
Cofilin (ADF) affects lateral contacts in F-actin   总被引:1,自引:0,他引:1  
The effect of yeast cofilin on lateral contacts between protomers of yeast and skeletal muscle actin filaments was examined in solution. These contacts are presumably stabilized by the interactions of loop 262-274 of one protomer with two other protomers on the opposite strand in F-actin. Cofilin inhibited several-fold the rate of interstrand disulfide cross-linking between Cys265 and Cys374 in yeast S265C mutant F-actin, but enhanced excimer formation between pyrene probes attached to these cysteine residues. The possibility that these effects are due to a translocation of the C terminus of actin by cofilin was ruled out by measurements of fluorescence resonance energy transfer (FRET) from tryptophan residues and ATP to acceptor probes at Cys374. Such measurements did not reveal cofilin-induced changes in FRET efficiency, suggesting that changes in Cys265-Cys374 cross-linking and excimer formation stem from the perturbation of loop 262-274 by cofilin. Changes in lateral interactions in F-actin were indicated also by the cofilin-induced partial release of rhodamine phalloidin. Disulfide cross-linking of S265C yeast F-actin inhibited strongly and reversibly the release of rhodamine phalloidin by cofilin. Overall, this study provides solution evidence for the weakening of lateral interactions in F-actin by cofilin.  相似文献   

5.
The DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274), and the C terminus region are among the structural elements of monomeric (G-) actin proposed to form the intermonomer interface in F-actin. To test the proximity and interactions of these elements and to provide constraints on models of F-actin structure, cysteine residues were introduced into yeast actin either at residue 41 or 265. These mutations allowed for specific cross-linking of F-actin between C41 and C265, C265 and C374, and C41 and C265 using dibromobimane and disulfide bond formation. The cross-linked products were visualized on SDS-PAGE and by electron microscopy. Model calculations carried out for the cross-linked F-actins revealed that considerable flexibility or displacement of actin residues is required in the disulfide cross-linked segments to fit these filaments into model F-actin structures. The calculated, cross-linked structures showed a better fit to the Holmes rather than the refined Lorenz model of F-actin. It is predicted on the basis of such calculations that image reconstruction of electron micrographs of disulfide cross-linked C41-C374 F-actin should provide a conclusive test of these two similar models of F-actin structure.  相似文献   

6.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

7.
According to the original Holmes model of F-actin structure, the hydrophobic loop 262-274 stabilizes the actin filament by inserting into a pocket formed at the interface between two protomers on the opposing strand. Using a yeast actin triple mutant, L180C/L269C/C374A [(LC)(2)CA], we showed previously that locking the hydrophobic loop to the G-actin surface by a disulfide bridge prevents filament formation. We report here that the hydrophobic loop is mobile in F- as well as in G-actin, fluctuating between the extended and parked conformations. Copper-catalyzed, brief air oxidation of (LC)(2)CA F-actin on electron microscopy grids resulted in the severing of thin filaments and their conversion to amorphous aggregates. Disulfide, bis(methanethiosulfonate) (MTS), and dibromobimane (DBB) cross-linking reactions proceeded in solution at a faster rate with G- than with F-actin. Cross-linking of C180 to C269 by DBB (4.4 A) in either G- or F-actin resulted in shorter and less stable filaments. The cross-linking with a longer MTS-6 reagent (9.6 A) did not impair actin polymerization or filament structure. Myosin subfragment 1 (S1) and tropomyosin inhibited the disulfide cross-linking of phalloidin-stabilized F-actin. Electron paramagnetic resonance measurements with nitroxide spin-labeled actin revealed strong spin-spin coupling and a similar mean interspin distance ( approximately 10 A) in G- and in F-actin, with a broader distance distribution in G-actin. These results show loop 262-274 fluctuations in G- and F-actin and correlate loop dynamics with actin filament formation and stability.  相似文献   

8.
Models of F-actin structure predict the importance of hydrophobic loop 262-274 at the interface of subdomains 3 and 4 to interstrand interactions in filaments. If this premise is correct, prevention of the loop conformational change--its swinging motion--should abort filament formation. To test this hypothesis, we used site-directed mutagenesis to create yeast actin triple mutant (LC)2CA (L180C/L269C/C374A). This mutation places two cysteine residues in positions potentially enabling the locking of loop 262-274 to the monomer surface via disulfide formation. Exposure of the purified mutant to oxidation catalysts resulted in an increased electrophoretic mobility of actin on SDS PAGE and a loss of two cysteines by DTNB titrations, consistent with disulfide formation. The polymerization of un-cross-linked mutant actin by MgCl2 was inhibited strongly but could be restored to wild type actin levels by phalloidin and improved greatly through copolymerization with the wild-type actin. Light scattering measurements revealed nonspecific aggregation of the cross-linked actin under the same conditions. Electron microscopy confirmed the absence of filaments and the presence of amorphous aggregates in the cross-linked actin samples. Reduction of the disulfide bond by DTT restored normal actin polymerization in the presence of MgCl2 and phalloidin. These observations provide strong experimental support for a critical role of the hydrophobic loop 262-274 in the polymerization of actin into filaments.  相似文献   

9.
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by ∼ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by ∼ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.  相似文献   

10.
Drebrin is a filament-binding protein involved in organizing the dendritic pool of actin. Previous in vivo studies identified the actin-binding domain of drebrin (DrABD), which causes the same rearrangements in the cytoskeleton as the full-length protein. Site-directed mutagenesis, electron microscopic reconstruction, and chemical cross-linking combined with mass spectrometry analysis were employed here to map the DrABD binding interface on actin filaments. DrABD could be simultaneously attached to two adjacent actin protomers using the combination of 2-iminothiolane (Traut's reagent) and MTS1 [1,1-methanediyl bis(methanethiosulfonate)]. Site-directed mutagenesis combined with chemical cross-linking revealed that residue 238 of DrABD is located within 5.4 Å from C374 of actin protomer 1 and that native cysteine 308 of drebrin is near C374 of actin protomer 2. Mass spectrometry analysis revealed that a zero-length cross-linker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, can link the N-terminal G-S extension of the recombinant DrABD to E99 and/or E100 on actin. Efficient cross-linking of drebrin residues 238, 248, 252, 270, and 271 to actin residue 51 was achieved with reagents of different lengths (5.4-19 Å). These results suggest that the “core” DrABD is centered on actin subdomain 2 and may adopt a folded conformation upon binding to F-actin. The results of electron microscopic reconstruction, which are in a good agreement with the cross-linking data, revealed polymorphism in DrABD binding to F-actin and suggested the existence of two binding sites. These results provide new structural insight into the previously observed competition between drebrin and several other F-actin-binding proteins.  相似文献   

11.
Cross-links between protomers in F-actin can be used as a very sensitive probe of both the dynamics and structure of F-actin. We have characterized filaments formed from a previously described yeast actin Q41C mutant, where disulfide bonds can be formed between the Cys41 that is introduced into subdomain-2 and Cys374 on an adjacent protomer. We find that the distribution of cross-linked n-mers shows no cooperativity and corresponds to a random probability cross-linking reaction. The random distribution suggests that disulfide formation does not cause a significant perturbation of the F-actin structure. Consistent with this lack of perturbation, three-dimensional reconstructions of extensively cross-linked filaments, using a new approach to helical image analysis, show very small structural changes with respect to uncross-linked filaments. This finding is in conflict with refined models but in agreement with the original Holmes et al. model for F-actin. Under conditions where 94 % of the protomers are linked by disulfide bonds, the distribution of filament twist becomes more heterogeneous with respect to control filaments. A molecular model suggests that strain, introduced by the disulfide, is relieved by increasing the twist of the long-pitch actin helices. Disulfide formation makes yeast actin filaments approximately three times less flexible in terms of bending and similar, in this respect, to vertebrate skeletal muscle F-actin. These observations support previous reports that the rigidity of F-actin can be controlled by the position of subdomain-2, and that this region is more flexible in yeast F-actin than in skeletal muscle F-actin.  相似文献   

12.
Drebrin is an actin filament (F-actin)–binding protein with crucial roles in neuritogenesis and synaptic plasticity. Drebrin couples dynamic microtubules to F-actin in growth cone filopodia via binding to the microtubule-binding +TIP protein EB3 and organizes F-actin in dendritic spines. Precisely how drebrin interacts with F-actin and how this is regulated is unknown. We used cellular and in vitro assays with a library of drebrin deletion constructs to map F-actin binding sites. We discovered two domains in the N-terminal half of drebrin—a coiled-coil domain and a helical domain—that independently bound to F-actin and cooperatively bundled F-actin. However, this activity was repressed by an intramolecular interaction relieved by Cdk5 phosphorylation of serine 142 located in the coiled-coil domain. Phospho-mimetic and phospho-dead mutants of serine 142 interfered with neuritogenesis and coupling of microtubules to F-actin in growth cone filopodia. These findings show that drebrin contains a cryptic F-actin–bundling activity regulated by phosphorylation and provide a mechanistic model for microtubule–F-actin coupling.  相似文献   

13.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

14.
Troponin T (TnT) is an essential component of troponin (Tn) for the Ca(2+)-regulation of vertebrate striated muscle contraction. TnT consists of an extended NH(2)-terminal domain that interacts with tropomyosin (Tm) and a globular COOH-terminal domain that interacts with Tm, troponin I (TnI), and troponin C (TnC). We have generated two mutants of a rabbit skeletal beta-TnT 25-kDa fragment (59-266) that have a unique cysteine at position 60 (N-terminal region) or 250 (C-terminal region). To understand the spatial rearrangement of TnT on the thin filament in response to Ca(2+) binding to TnC, we measured distances from Cys-60 and Cys-250 of TnT to Gln-41 and Cys-374 of F-actin on the reconstituted thin filament by using fluorescence resonance energy transfer (FRET). The distances from Cys-60 and Cys-250 of TnT to Gln-41 of F-actin were 39.5 and 30.0 A, respectively in the absence of Ca(2+), and increased by 2.6 and 5.8 A, respectively upon binding of Ca(2+) to TnC. The rigor binding of myosin subfragment 1 (S1) further increased these distances by 4 and 5 A respectively, when the thin filaments were fully decorated with S1. This indicates that not only the C-terminal but also the N-terminal region of TnT showed the Ca(2+)- and S1-induced movement, and the C-terminal region moved more than N-terminal region. In the absence of Ca(2+), the rigor S1 binding also increased the distances to the same extent as the presence of Ca(2+) when the thin filaments were fully decorated with S1. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding both in the presence and absence of Ca(2+). However, plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed hyperbolic curve in the presence of Ca(2+) but sigmoidal curve in the absence of Ca(2+). FRET measurement of the distances from Cys-60 and Cys-250 of TnT to Cys-374 of actin showed almost the same results as the case of Gln-41 of actin. The present FRET measurements demonstrated that not only TnI but also TnT change their positions on the thin filament corresponding to three states of thin filaments (relaxed, Ca(2+)-induced or closed, and S1-induced or open states).  相似文献   

15.
Cofilin is a major cytoskeletal protein that binds to both monomeric actin (G-actin) and polymeric actin (F-actin) and is involved in microfilament dynamics. Although an atomic structure of the G-actin-cofilin complex does not exist, models of the complex have been built using molecular dynamics simulations, structural homology considerations, and synchrotron radiolytic footprinting data. The hydrophobic cleft between actin subdomains 1 and 3 and, alternatively, the cleft between actin subdomains 1 and 2 have been proposed as possible high-affinity cofilin binding sites. In this study, the proposed binding of cofilin to the subdomain 1/subdomain 3 region on G-actin has been probed using site-directed mutagenesis, fluorescence labeling, and chemical cross-linking, with yeast actin mutants containing single reactive cysteines in the actin hydrophobic cleft and with cofilin mutants carrying reactive cysteines in the regions predicted to bind to G-actin. Mass spectrometry analysis of the cross-linked complex revealed that cysteine 345 in subdomain 1 of mutant G-actin was cross-linked to native cysteine 62 on cofilin. A cofilin mutant that carried a cysteine substitution in the α3-helix (residue 95) formed a cross-link with residue 144 in actin subdomain 3. Distance constraints imposed by these cross-links provide experimental evidence for cofilin binding between actin subdomains 1 and 3 and fit a corresponding docking-based structure of the complex. The cross-linking of the N-terminal region of recombinant yeast cofilin to actin residues 346 and 374 with dithio-bis-maleimidoethane (12.4 Å) and via disulfide bond formation was also documented. This set of cross-linking data confirms the important role of the N-terminal segment of cofilin in interactions with G-actin.  相似文献   

16.
Disulfide cross-linking of caldesmon to actin.   总被引:2,自引:0,他引:2  
Treatment of a solution of actin and smooth muscle caldesmon with 5,5'-dithiobis(2-nitrobenzoic acid) results in the formation of a disulfide cross-link between the C-terminal penultimate residue Cys-374 of actin and Cys-580 in caldesmon's C-terminal actin-binding region. Therefore, these 2 residues are close in the actin-caldesmon complex. Since myosin also binds to actin in the vicinity of Cys-374 and since caldesmon inhibits actomyosin ATPase activity by the reduction of myosin binding to actin, then the inhibition might be by caldesmon sterically hindering or blocking myosin's interaction with actin. [Ca2+]Calmodulin, which reverses the inhibition of the ATPase activity, decreases the yield of the cross-linked species, suggesting a weakening of the caldesmon-actin interaction in the cross-linked region. It is possible to maximally cross-link one caldesmon molecule/every three actin monomers, in the absence or presence of tropomyosin, clearly ruling out an elongated, end-to-end alignment of caldesmon on the actin filament in vitro, and raising the possibility that the N-terminal part of caldesmon projects out from the filament. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid)-modified actin with caldesmon leads to the same disulfide cross-linked product between actin and caldesmon Cys-580, enabling the specific labeling of the other caldesmon cysteine, residue 153, in the N-terminal part of caldesmon with a spectroscopic probe.  相似文献   

17.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

18.
The deletion mutant (D234Tm) of rabbit skeletal muscle alpha-tropomyosin, in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing, inhibits the thin filament activated myosin-ATPase activity whether Ca(2+) ion is present or not [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056]. Fluorescence resonance energy transfer (FRET) showed substantial changes in distances between Cys-60 or 250 of troponin T (TnT) and Gln-41 or Cys-374 of actin on wild-type thin filaments corresponding to three states of thin filaments [Kimura et al. (2002) J. Biochem. 132, 93-102]. Troponin T movement on mutant thin filaments reconstituted with D234Tm was compared with that on wild-type thin filaments to understand from which the functional deficiency of mutant thin filaments derives. The Ca(2+)-induced changes in distances between Cys-250 of TnT and Gln-41 or Cys-374 of F-actin were smaller on mutant thin filaments than on wild-type thin filaments. On the other hand, the distances between Cys-60 of TnT and Gln-41 or Cys-374 of F-actin on mutant thin filaments did not change at all regardless of whether Ca(2+) was present. Thus, FRET showed that the Ca(2+)-induced movement of TnT was severely impaired on mutant thin filaments. The rigor binding of myosin subfragment 1 (S1) increased the distances when the thin filaments were fully decorated with S1 in the presence and absence of Ca(2+). However, plots of the extent of S1-incuced movement of TnT against molar ratio of S1 to actin in the presence and absence of Ca(2+) showed that the S1-induced movement of TnT was also impaired on mutant thin filaments. The deficiency of TnT movement on mutant thin filaments causes the altered S1-induced movement of TnI, and mutant thin filaments consequently fail to activate the myosin-ATPase activity even in the presence of Ca(2+).  相似文献   

19.
The Holmes F-actin model predicts a polymerization-dependent conformation change of a subdomain 3/4 loop with a hydrophobic tip (residues 266-269), allowing interaction with a hydrophobic surface on the opposing strand of the filament producing filament stabilization. We introduced cysteines in place of Val(266), Leu(267), and Leu(269) in yeast actin to allow attachment of pyrene maleimide. Pyrene at each of these positions produced differing fluorescence spectra in G-actin. Polymerization decreased the fluorescence for the 266 and 267 probes and increased that for the 269 probe. The direction of the fluorescence change was mirrored with a smaller and less hydrophobic probe, acrylodan, when attached to 266 or 269. Following polymerization, increased acrylamide quenching was observed for pyrene at 266 or 267 but not 269. The 267 probe was the least accessible of the three in G- and F-actin. F-actin quenching was biphasic for the 265, 266, and 269 but not 267 probes, suggesting that in F-actin, the pyrene samples multiple environments. Finally, in F-actin the probe at 266 interacts with one at Cys(374) on a monomer in the opposing strand, producing a pyrene excimer band. These results indicate a polymerization-dependent movement of the subdomain 3/4 loop partially consistent with Holmes' model.  相似文献   

20.
HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号