首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

2.
《Luminescence》2003,18(5):259-267
High‐valent oxo‐iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water‐soluble iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme‐enzyme to catalyse the hydrogen peroxide (H2O2) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H2O2 has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H2O2 and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H2O2 to produce (TMPyP)·+Fe(IV)=O (k1 = 4.5 × 104/mol/L/s) as a precursor of TMPyPFe(IV)=O. The intermediate, (TMPyP)·+Fe(IV)=O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in suf?cient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay pro?les of the luminol chemiluminescence. It also shows that (TMPyP)·+Fe(IV)=O is 100 times more reactive than TMPyPFe(IV)=O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper allosteric interactions in protonmotive heme aa3 terminal oxidases of the respiratory chain are dealt with. The different lines of evidence supporting the key role of H+/e? coupling (redox Bohr effect) at the low spin heme a in the proton pump of the bovine oxidase are summarized. Results are presented showing that the I-R54M mutation in P. denitrificans aa3 oxidase, which decreases by more than 200 mV the Em of heme a, inhibits proton pumping. Mutational aminoacid replacement in proton channels, at the negative (N) side of membrane-inserted prokaryotic aa3 oxidases, as well as Zn2 + binding at this site in the bovine oxidase, uncouples proton pumping. This effect appears to result from alteration of the structural/functional device, closer to the positive, opposite (P) surface, which separates pumped protons from those consumed in the reduction of O2 to 2 H2O. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

4.
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH distance and CuB1+-H2O structure keeping Fea33+-OH state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.  相似文献   

5.
Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M−1 s−1, and to 2.96 M−1 s−1, respectively. This pH dependence is associated with the disruption of the heme–tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV–vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0×10−2 s−1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme–tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.  相似文献   

6.
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D2O was observed at ∼2200 cm−1 in BR but was significantly higher in ASR (>2500 cm−1), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pKa(Asp-85) in BR relative to the pKa(Asp-75) in ASR, which were calculated to be 1.5 and −5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194–Glu-204, and Asp-212 on pKa(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pKa(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.  相似文献   

7.
X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3.  相似文献   

8.
Mårten Wikström 《BBA》2012,1817(4):468-475
The mechanism of dioxygen activation and reduction in cell respiration, as catalysed by cytochrome c oxidase, has a long history. The work by Otto Warburg, David Keilin and Britton Chance defined the dioxygen-binding heme iron centre, viz. das Atmungsferment, or cytochrome a3. Chance brought the field further in the mid-1970's by ingenious low-temperature studies that for the first time identified the primary enzyme-substrate (ES) Michaelis complex of cell respiration, the dioxygen adduct of heme a3, which he termed Compound A. Further work using optical, resonance Raman, EPR, and other sophisticated spectroscopic techniques, some of which with microsecond time resolution, has brought us to the situation today, where major principles of how O2 reduction occurs in respiration are well understood. Nonetheless, some questions have remained open, for example concerning the precise structures, catalytic roles, and spectroscopic properties of the breakdown products of Compound A that have been called P, F (for peroxy and ferryl), and O (oxidised). This nomenclature has been known to be inadequate for some time already, and an alternative will be suggested here. In addition, the multiple forms of P, F and O states have been confusing, a situation that we endeavour to help clarifying. The P and F states formed artificially by reacting cytochrome oxidase with hydrogen peroxide are especially scrutinised, and some novel interpretations will be given that may account for previously unexplained observations. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

9.
The dioxygen reduction mechanism in cytochrome oxidases relies on proton control of the electron transfer events that drive the process. Proton delivery and proton channels in the protein that are relevant to substrate reduction and proton pumping are considered, and the current status of this area is summarized. We propose a mechanism in which the coupling of the oxygen reduction chemistry to proton translocation (P  F transition) is related to the properties of two groups of highly conserved residues, namely, His411/G386-T389 and the heme a3–propionateA–D399–H403 chain. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

10.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

11.
Cytochrome c oxidase is a multisubunit membrane-bound enzyme, which catalyzes oxidation of four molecules of cytochrome c2+ and reduction of molecular oxygen to water. The electrons are taken from one side of the membrane while the protons are taken from the other side. This topographical arrangement results in a charge separation that is equivalent to moving one positive charge across the membrane for each electron transferred to O2. In this reaction part of the free energy available from O2 reduction is conserved in the form of an electrochemical proton gradient. In addition, part of the free energy is used to pump on average one proton across the membrane per electron transferred to O2. Our understanding of the molecular design of the machinery that couples O2 reduction to proton pumping in oxidases has greatly benefited from studies of so called “uncoupled” structural variants of the oxidases. In these uncoupled oxidases the catalytic O2-reduction reaction may display the same rates as in the wild-type CytcO, yet the electron/proton transfer to O2 is not linked to proton pumping. One striking feature of all uncoupled variants studied to date is that the (apparent) pKa of a Glu residue, located deeply within a proton pathway, is either increased or decreased (from 9.4 in the wild-type oxidase). The altered pKa presumably reflects changes in the local structural environment of the residue and because the Glu residue is found near the catalytic site as well as near a putative exit pathway for pumped protons these changes are presumably important for controlling the rates and trajectories of the proton transfer. In this paper we summarize data obtained from studies of uncoupled structural oxidase variants and present a hypothesis that in quantitative terms offers a link between structural changes, modulation of the apparent pKa and uncoupling of proton pumping from O2 reduction.  相似文献   

12.
Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a−/− mice exhibit significantly enhanced Ca2+ retention capacity and accelerated Ca2+ uptake rate. When challenged with hydrogen peroxide (H2O2), ASIC1a−/− neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H2O2-induced neuronal death, which is MPT dependent, is reduced in ASIC1a−/− neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a−/− mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.  相似文献   

13.
Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e) but it has been suggested that stoichiometry may be 3H+/2e based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e in mouse and human cells at high and physiological proton motive force.  相似文献   

14.
Proton transfer involving internal water molecules that provide hydrogen bonds and facilitate proton diffusion has been identified in some membrane proteins. Arg-94 in cytochrome b of the Rhodobacter sphaeroides bc1 complex is fully conserved and is hydrogen-bonded to the heme propionate and a chain of water molecules. To further elucidate the role of Arg-94, we generated the mutations R94A, R94D, and R94N. The wild-type and mutant bc1 complexes were purified and then characterized. The results show that substitution of Arg-94 decreased electron transfer activity and proton pumping capability and increased O2˙̄ production, suggesting the importance of Arg-94 in the catalytic mechanism of the bc1 complex in R. sphaeroides. This also suggests that the transport of H+, O2, and O2˙̄ in the bc1 complex may occur by the same pathway.  相似文献   

15.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

16.
Six oxygen-associated resonance Raman bands were identified for intermediates in the reaction of bovine cytochrome c oxidase with O2 at room temperature. The primary intermediate, corresponding to Compound A of cryogenic measurements, is an O2 adduct of heme a 3 and its isotope frequency shifts for 16O18O have established that the binding is of an end-on type. This is followed by two oxoheme intermediates, and the final intermediate appearing around 3 ms is the Fe–OH heme. The reaction rate between the two oxoheme intermediates is significantly slower in D2O than in H2O, suggesting that the electron transfer is regulated by proton translocations at this step. It is noted that the reaction intermediates of oxidized enzyme with hydrogen peroxide yield the same three sets of oxygen isotope-sensitive bands as those of oxoheme intermediates seen for O2 reduction and that the O–O bond has already been cleaved in the so-called peroxy form (or 607 nm form).  相似文献   

17.
18.
《BBA》2020,1861(9):148237
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+–CuB2+ center on the electron–proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN– and the formate–ligated CcO with slopes of −13 mV/pH unit and −23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron–proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron–proton coupling at the physiological pH values is also substantiated by the UV–Vis absorption and electron–paramagnetic resonance spectroscopy investigations of the cyanide–ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His–Fea3+–His and His–Fea3+–OH occurs only at pH above 9.5 with the estimated pK >11.0.  相似文献   

19.
Chilling temperatures (5°C) and high irradiance (1000 microeinsteins per square meter per second) were used to induce photooxidation in detached leaves of cucumber (Cucumis sativus L.), a chilling-sensitive plant. Chlorophyll a, chlorophyll b, β carotene, and three xanthophylls were degraded in a light-dependent fashion at essentially the same rate. Lipid peroxidation (measured as ethane evolution) showed an O2 dependency. The levels of three endogenous antioxidants, ascorbate, reduced glutathione, and α tocopherol, all showed an irradiance-dependent decline. α-Tocopherol was the first antioxidant affected and appeared to be the only antioxidant that could be implicated in long-term protection of the photosynthetic pigments. Results from the application of antioxidants having relative selectivity for 1O2, O2, or OH indicated that both 1O2 and O2 were involved in the chilling- and light-induced lipid peroxidation which accompanied photooxidation. Application of D2O (which enhances the lifetime of 1O2) corroborated these results. Chilling under high light produced no evidence of photooxidative damage in detached leaves of chilling-resistant pea (Pisum sativum L.). Our results suggest a fundamental difference in the ability of pea to reduce the destructive effects of free-radical and 1O2 production in chloroplasts during chilling in high light.  相似文献   

20.
Complex I pumps protons across the membrane by using downhill redox energy. Here, to investigate the proton pumping mechanism by complex I, we focused on the largest transmembrane subunit NuoL (Escherichia coli ND5 homolog). NuoL/ND5 is believed to have H+ translocation site(s), because of a high sequence similarity to multi-subunit Na+/H+ antiporters. We mutated thirteen highly conserved residues between NuoL/ND5 and MrpA of Na+/H+ antiporters in the chromosomal nuoL gene. The dNADH oxidase activities in mutant membranes were mostly at the control level or modestly reduced, except mutants of Glu-144, Lys-229, and Lys-399. In contrast, the peripheral dNADH-K3Fe(CN)6 reductase activities basically remained unchanged in all the NuoL mutants, suggesting that the peripheral arm of complex I was not affected by point mutations in NuoL. The proton pumping efficiency (the ratio of H+/e), however, was decreased in most NuoL mutants by 30–50%, while the IC50 values for asimicin (a potent complex I inhibitor) remained unchanged. This suggests that the H+/e stoichiometry has changed from 4H+/2e to 3H+ or 2H+/2e without affecting the direct coupling site. Furthermore, 50 μm of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), a specific inhibitor for Na+/H+ antiporters, caused a 38 ± 5% decrease in the initial H+ pump activity in the wild type, while no change was observed in D178N, D303A, and D400A mutants where the H+ pumping efficiency had already been significantly decreased. The electron transfer activities were basically unaffected by EIPA in both control and mutants. Taken together, our data strongly indicate that the NuoL subunit is involved in the indirect coupling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号