首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baker’s yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125–150 million years ago in the Saccharomyces lineage. The “invention” of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The “invention” of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to “starve” competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently “invented” as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.  相似文献   

2.
3.
4.
5.
Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using 35S-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored the intracellular proteolysis pattern during glucose starvation. Approximately 200 protein spots diminished in the wild-type cells during an 8-h time course. The degradation rate of at least 80 proteins was significantly reduced in clpP, clpC, and clpX mutant strains. Enzymes of amino acid and nucleotide metabolism were overrepresented among these Clp substrate candidates. Notably, several first-committed-step enzymes for biosynthesis of aromatic and branched-chain amino acids, cell wall precursors, purines, and pyrimidines appeared as putative Clp substrates. Radioimmunoprecipitation demonstrated GlmS, IlvB, PurF, and PyrB to be novel ClpCP targets. Our data imply that Clp proteases down-regulate central metabolic pathways upon entry into a nongrowing state and thus contribute to the adaptation to nutrient starvation. Proteins that are obviously nonfunctional, unprotected, or even “unemployed” seem to be recognized and proteolyzed by Clp proteases when the resources for growth become limited.  相似文献   

6.
Presence of glycogen granules in anaerobic ammonium-oxidizing (anammox) bacteria has been reported so far. However, very little is known about their glycogen metabolism and the exact roles. Here, we studied the glycogen metabolism in “Ca. Brocadia sinica” growing in continuous retentostat cultures with bicarbonate as a carbon source. The effect of the culture growth phase was investigated. During the growing phase, intracellular glycogen content increased up to 32.6 mg-glucose (g-biomass dry wt)−1 while the specific growth rate and ATP/ADP ratio decreased. The accumulated glycogen begun to decrease at the onset of entering the near-zero growth phase and was consumed rapidly when substrates were depleted. This clearly indicates that glycogen was synthesized and utilized as an energy storage. The proteomic analysis revealed that “Ca. B. sinica” synthesized glycogen via three known glycogen biosynthesis pathways and simultaneously degraded during the progress of active anammox, implying that glycogen is being continuously recycled. When cells were starved, a part of stored glycogen was converted to trehalose, a potential stress protectant. This suggests that glycogen serves at least as a primary carbon source of trehalose synthesis for survival. This study provides the first physiological evidence of glycogen metabolism in anammox bacteria and its significance in survival under natural substrate-limited habitat.Subject terms: Applied microbiology, Water microbiology  相似文献   

7.
Since genome analysis did not allow unambiguous reconstruction of transport, catabolism, and substrate-specific regulation for several important carbohydrates in Phaeobacter inhibens DSM 17395, proteomic and metabolomic analyses of N-acetylglucosamine-, mannitol-, sucrose-, glucose-, and xylose-grown cells were carried out to close this knowledge gap. These carbohydrates can pass through the outer membrane via porins identified in the outer membrane fraction. For transport across the cytoplasmic membrane, carbohydrate-specific ABC transport systems were identified. Their coding genes mostly colocalize with the respective “catabolic” and “regulatory” genes. The degradation of N-acetylglucosamine proceeds via N-acetylglucosamine-6-phosphate and glucosamine-6-phosphate directly to fructose-6-phosphate; two of the three enzymes involved were newly predicted and identified. Mannitol is catabolized via fructose, sucrose via fructose and glucose, glucose via glucose-6-phosphate, and xylose via xylulose-5-phosphate. Of the 30 proteins predicted to be involved in uptake, regulation, and degradation, 28 were identified by proteomics and 19 were assigned to their respective functions for the first time. The peripheral degradation pathways feed into the Entner-Doudoroff (ED) pathway, which is connected to the lower branch of the Embden-Meyerhof-Parnas (EMP) pathway. The enzyme constituents of these pathways displayed higher abundances in P. inhibens DSM 17395 cells grown with any of the five carbohydrates tested than in succinate-grown cells. Conversely, gluconeogenesis is turned on during succinate utilization. While tricarboxylic acid (TCA) cycle proteins remained mainly unchanged, the abundance profiles of their metabolites reflected the differing growth rates achieved with the different substrates tested. Homologs of the 74 genes involved in the reconstructed catabolic pathways and central metabolism are present in various Roseobacter clade members.  相似文献   

8.
Interferon-inducible GTPases of the Immunity Related GTPase (IRG) and Guanylate Binding Protein (GBP) families provide resistance to intracellular pathogenic microbes. IRGs and GBPs stably associate with pathogen-containing vacuoles (PVs) and elicit immune pathways directed at the targeted vacuoles. Targeting of Interferon-inducible GTPases to PVs requires the formation of higher-order protein oligomers, a process negatively regulated by a subclass of IRG proteins called IRGMs. We found that the paralogous IRGM proteins Irgm1 and Irgm3 fail to robustly associate with “non-self” PVs containing either the bacterial pathogen Chlamydia trachomatis or the protozoan pathogen Toxoplasma gondii. Instead, Irgm1 and Irgm3 reside on “self” organelles including lipid droplets (LDs). Whereas IRGM-positive LDs are guarded against the stable association with other IRGs and GBPs, we demonstrate that IRGM-stripped LDs become high affinity binding substrates for IRG and GBP proteins. These data reveal that intracellular immune recognition of organelle-like structures by IRG and GBP proteins is partly dictated by the missing of “self” IRGM proteins from these structures.  相似文献   

9.
Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.  相似文献   

10.
While there has been much recent focus on the ecological causes of adaptive diversification, we know less about the genetic nature of the trade-offs in resource use that create and maintain stable, diversified ecotypes. Here we show how a regulatory genetic change can contribute to sympatric diversification caused by differential resource use and maintained by negative frequency-dependent selection in Escherichia coli. During adaptation to sequential use of glucose and acetate, these bacteria differentiate into two ecotypes that differ in their growth profiles. The “slow-switcher” exhibits a long lag when switching to growth on acetate after depletion of glucose, whereas the “fast-switcher” exhibits a short switching lag. We show that the short switching time in the fast-switcher is associated with a failure to down-regulate potentially costly acetate metabolism during growth on glucose. While growing on glucose, the fast-switcher expresses malate synthase A (aceB), a critical gene for acetate metabolism that fails to be properly down-regulated because of a transposon insertion in one of its regulators. Swapping the mutant regulatory allele with the ancestral allele indicated that the transposon is in part responsible for the observed differentiation between ecological types. Our results provide a rare example of a mechanistic integration of diversifying processes at the genetic, physiological, and ecological levels.  相似文献   

11.
This review summarizes heme metabolism and focuses especially upon the control of hepatic heme biosynthesis. Activity of δ-aminolevulinic acid synthetase, the first enzyme of heme biosynthesis, is of primary importance in controlling the overall activity of this biosynthetic pathway. Δ-aminolevulinic acid synthetase is subject to inhibition and repression by heme, and numerous basic and clinical studies support the concept that there exists within hepatocytes a “regulatory” heme pool which controls activity of δ-aminolevulinic acid synthetase. In addition, activity of this enzyme is repressed by feeding, especially by ingestion of carbohydrates (the so-called “glucose effect”). Studies pertaining to the mechanisms underlying this effect are also reviewed. The “glucose effect” appears to be mediated by glucose or perhaps by glucose-6-phosphate or uridine diphosphate glucose, rather than by metabolites further removed from glucose itself. Unlike the situation in E. coli, the “glucose effect” in liver of higher organisms is not mediated by alterations in intracellular concentrations of cyclic AMP. Effects of heavy metals, especially iron, on hepatic heme metabolism are also considered. Iron has been found to inhibit formation and utilization of uroporphyrinogen III and to lead to decreased concentrations of microsomal heme and cytochrome P-450. Administration of large amounts of iron is also associated with an increase in activity of heme oxygenase, a property shared by several other metal ions, most notably cobalt. This effect of iron or cobalt administration is similar to the effect of heme administration in increasing heme oxygenase activity; however, we believe it is unlikely that iron, rather than heme itself, is a physiologic regulator of hepatic heme metabolism, although this hypothesis has lately been proposed.  相似文献   

12.
Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to “feed” adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the “reverse Warburg effect,” which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, “energy transfer” or “metabolic-coupling” between the tumor stroma and epithelial cancer cells “fuels” tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.Key words: caveolin-1, oxidative stress, pseudohypoxia, lactate shuttle, MCT1, MCT4, metabolic coupling, tumor stroma, predictive biomarker, SLC16A1, SLC16A3, monocarboxylic acid transporter  相似文献   

13.
Protein aggregation is a phenomenon observed in all organisms and has often been linked with cell disorders. In addition, several groups have reported a virtual absence of protein aggregates in healthy cells. In contrast to previous studies and the expected outcome, we observed aggregated proteins in aerobic exponentially growing and “healthy” Escherichia coli cells. We observed overrepresentation of “aberrant proteins,” as well as substrates of the major conserved chaperone DnaK (Hsp70) and the protease ClpXP (a serine protease), in the aggregates. In addition, the protein aggregates appeared to interact with chaperones known to be involved in the aggregate repair pathway, including ClpB, GroEL, GroES, and DnaK. Finally, we showed that the levels of reactive oxygen species and unfolded or misfolded proteins determine the levels of protein aggregates. Our results led us to speculate that protein aggregates may function as a temporary “trash organelle” for cellular detoxification.  相似文献   

14.
Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.  相似文献   

15.
16.
N S Nilova 《Tsitologiia》1982,24(7):818-822
Depolarization induced by the increase in potassium content in the medium results in the augmented oxygen consumption by the rat brain synaptosomes, when glucose and pyruvate were used as substrates; with glutamate as substrates no such effect of potassium occurred. No effect of depolarization is present in the case of synaptosomes from animals with a paradoxical sleep deprivation; the addition of glutamine (0.5 mM) restores the capability in synaptosomes of metabolic response to depolarization. No effect of glutamine is observed with synaptosomes from brain hemispheres of rats with disturbed sleep.  相似文献   

17.
Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.  相似文献   

18.
Identification of Arabidopsis rat mutants   总被引:5,自引:0,他引:5       下载免费PDF全文
Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various “reverse genetic” approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants.  相似文献   

19.
Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using “omic”-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species “omic” comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号