首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Anatomical atlases play an important role in the analysis of neuroimaging data in rodent neuroimaging studies. Having a high resolution, detailed atlas not only can expand understanding of rodent brain anatomy, but also enables automatic segmentation of new images, thus greatly increasing the efficiency of future analysis when applied to new data. These atlases can be used to analyze new scans of individual cases using a variety of automated segmentation methods. This project seeks to develop a set of detailed 3D anatomical atlases of the brain at postnatal day 5 (P5), 14 (P14), and adults (P72) in Sprague-Dawley rats. Our methods consisted of first creating a template image based on fixed scans of control rats, then manually segmenting various individual brain regions on the template. Using itk-SNAP software, subcortical and cortical regions, including both white matter and gray matter structures, were manually segmented in the axial, sagittal, and coronal planes. The P5, P14, and P72 atlases had 39, 45, and 29 regions segmented, respectively. These atlases have been made available to the broader research community.  相似文献   

2.
Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques.  相似文献   

3.
IntroductionNeurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients.MethodsUsing publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients.ResultsThe parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes.DiscussionTo our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease.  相似文献   

4.
《IRBM》2014,35(1):27-32
Automatic anatomical brain image segmentation is still a challenge. In particular, algorithms have to address the partial volume effect (PVE) as well as the variability of the gray level of internal brain structures which may appear closer to gray matter (GM) than white matter (WM). Atlas based segmentation is one solution as it brings prior information. For such tasks, probabilistic atlases are very useful as they take account of the PVE information. In this paper, we provide a detailed analysis of a generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. The inputs are gray level data whereas our atlas is composed of both an estimation of the deformation metric and probability maps of each tissue (called class). This atlas is used to guide the tissue segmentation of new images. Experiments are shown on brain T1 MRI datasets. This method only requires approximate pre-registration, as the latter is done jointly with the segmentation. Note however that an approximate registration is a reasonable pre-requisite given the application.  相似文献   

5.
To unravel regulatory networks of genes functioning during embryonic development, information on in situ gene expression is required. Enormous amounts of such data are available in literature, where each paper reports on a limited number of genes and developmental stages. The best way to make these data accessible is via spatio-temporal gene expression atlases. Eleven atlases, describing developing vertebrates and covering at least 100 genes, were reviewed. This review focuses on: (i) the used anatomical framework, (ii) the handling of input data and (iii) the retrieval of information. Our aim is to provide insights into both the possibilities of the atlases, as well as to describe what more than a decade of developmental gene expression atlases can teach us about the requirements of the design of the ‘ideal atlas’. This review shows that most ingredients needed to develop the ideal atlas are already applied to some extent in at least one of the discussed atlases. A review of these atlases shows that the ideal atlas should be based on a spatial framework, i.e. a series of 3D reference models, which is anatomically annotated using an ontology with sufficient resolution, both for relations as well as for anatomical terms.  相似文献   

6.
In this paper we present a methodology to form an anatomical atlas based on the analysis of dense deformation fields recovered by the Morphons non-rigid registration algorithm. The methodology is based on measuring the bending energy required to register the whole database to a reference, and the atlas is the one image in the database which yields the smallest bending energy when taken as reference. The suitability of our atlas is demonstrated in the context of head and neck radiotherapy through its application to a database with thirty-one computed tomography (CT) images of the head and neck region. In head and neck radiotherapy, CT is the most frequently used modality for the segmentation of organs at risk and clinical target volumes. One challenge brought by the use of CT images is the presence of important artifacts caused by dental implants. The presence of such artifacts hinders the use of intensity averages, thus severely limiting the application of most atlas building techniques described in the literature in this context. The results presented in the paper show that our bending energy model faithfully represents the shape variability of patients in the head and neck region; they also show its good performance in segmentation of volumes of interest in radiotherapy. Moreover, when compared to other atlases of similar performance in automatic segmentation, our atlas presents the desirable feature of not being blurred after intensity averaging.  相似文献   

7.
Infant brain atlases from neonates to 1- and 2-year-olds   总被引:1,自引:0,他引:1  
Shi F  Yap PT  Wu G  Jia H  Gilmore JH  Lin W  Shen D 《PloS one》2011,6(4):e18746

Background

Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size.

Methodology

To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies.

Conclusions

We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.  相似文献   

8.
Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results.  相似文献   

9.
10.
This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.  相似文献   

11.
In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure.  相似文献   

12.
Volumetric, slice-based, 3-D atlases are invaluable tools for understanding complex cortical convolutions. We present a simple scheme to convert a slice-based atlas to a conceptual surface atlas that is easier to visualize and understand. The key idea is to unfold each slice into a one-dimensional vector, and concatenate a succession of these vectors – while maintaining as much spatial contiguity as possible – into a 2-D matrix. We illustrate our methodology using a coronal slice-based atlas of the Rhesus Monkey cortex. The conceptual surface-based atlases provide a useful complement to slice-based atlases for the purposes of indexing and browsing.  相似文献   

13.
14.
Surface-based and probabilistic atlases of primate cerebral cortex   总被引:3,自引:0,他引:3  
Van Essen DC  Dierker DL 《Neuron》2007,56(2):209-225
Brain atlases play an increasingly important role in neuroimaging, as they are invaluable for analysis, visualization, and comparison of results across studies. For both humans and macaque monkeys, digital brain atlases of many varieties are in widespread use, each having its own strengths and limitations. For studies of cerebral cortex there is particular utility in hybrid atlases that capitalize on the complementary nature of surface and volume representations, are based on a population average rather than an individual brain, and include measures of variation as well as averages. Linking different brain atlases to one another and to online databases containing a growing body of neuroimaging data will enable powerful forms of data mining that accelerate discovery and improve research efficiency.  相似文献   

15.
We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.81±0.02 using label propagation and fusion for the preterm population, and 0.81±0.02 using the single registration of a MPNA for the term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for neonates and the developing brain.  相似文献   

16.
Hypertext atlas of fetal and neonatal pathology is a free resource for pregraduate students of medicine, pathologists and other health professionals dealing with prenatal medicine. The atlas can be found at http://www.muni.cz/atlases. The access is restricted to registered users. Concise texts summarize the gross and microscopic pathology, etiology, and clinical signs of both common and rare fetal and neonatal conditions. The texts are illustrated with over 300 images that are accompanied by short comments. The atlas offers histological pictures of high quality. Virtual microscope interface is used to access the high-resolution histological images. Fetal ultrasound video clips are included. Case studies integrate clinical history, prenatal ultrasonographic examination, gross pathology and histological features. The atlas is available in English (and Czech) and equipped with an active index. The atlas is suitable both for medical students and pathologists as a teaching and reference tool. The atlas is going to be further expanded while keeping the high quality of the images.  相似文献   

17.
Capsule: The first European Bird Census Council (EBCC) Atlas of European Breeding Birds has been widely used in scientific publications.

Aims: To quantify how scientific publications have used data from the first European Bird Census Council (EBCC) Atlas of European Breeding Birds, what the topics of these studies have been, and to identify key aspects in which a second European Breeding Bird Atlas will provide new opportunities for basic and applied science.

Methods: We searched Google Scholar to find papers published in scientific journals that cited the first atlas. We analysed the contents of a random selection of 100 papers citing this atlas and described the way these papers used information from it.

Results: The first atlas has been cited in 3150 scientific publications, and can be regarded as a fundamental reference for studies about birds in Europe. It was extensively used as a key reference for the studied bird species. A substantial number of papers re-analysed atlas data to derive new information on species distribution, ecological traits and population sizes. Distribution and ecology were the most frequent topics of studies referring to the atlas, but this source of information was used in a diverse range of studies. In this context, climate change, impact of agriculture and habitat loss were, by order, the most frequently studied environmental pressures. Constraints in the atlas, such as the poor coverage in the east of Europe, the lack of information on distribution change and the coarse resolution were identified as issues limiting the use of the atlas for some purposes.

Conclusions: This study demonstrates the scientific value of European-wide breeding bird atlases. A second atlas, with its almost complete coverage across Europe, the incorporation of changes in distribution between the two atlases and the inclusion of modelled maps at a resolution of 10?×?10?km will certainly become a key data source and reference for researchers in the near future.  相似文献   

18.
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework.  相似文献   

19.
To assess the importance of variation in observer effort between and within bird atlas projects and demonstrate the use of relatively simple conditional autoregressive (CAR) models for analyzing grid‐based atlas data with varying effort. Pennsylvania and West Virginia, United States of America. We used varying proportions of randomly selected training data to assess whether variations in observer effort can be accounted for using CAR models and whether such models would still be useful for atlases with incomplete data. We then evaluated whether the application of these models influenced our assessment of distribution change between two atlas projects separated by twenty years (Pennsylvania), and tested our modeling methodology on a state bird atlas with incomplete coverage (West Virginia). Conditional Autoregressive models which included observer effort and landscape covariates were able to make robust predictions of species distributions in cases of sparse data coverage. Further, we found that CAR models without landscape covariates performed favorably. These models also account for variation in observer effort between atlas projects and can have a profound effect on the overall assessment of distribution change. Accounting for variation in observer effort in atlas projects is critically important. CAR models provide a useful modeling framework for accounting for variation in observer effort in bird atlas data because they are relatively simple to apply, and quick to run.  相似文献   

20.
Multi-atlas segmentation has been widely used to segment various anatomical structures. The success of this technique partly relies on the selection of atlases that are best mapped to a new target image after registration. Recently, manifold learning has been proposed as a method for atlas selection. Each manifold learning technique seeks to optimize a unique objective function. Therefore, different techniques produce different embeddings even when applied to the same data set. Previous studies used a single technique in their method and gave no reason for the choice of the manifold learning technique employed nor the theoretical grounds for the choice of the manifold parameters. In this study, we compare side-by-side the results given by 3 manifold learning techniques (Isomap, Laplacian Eigenmaps and Locally Linear Embedding) on the same data set. We assess the ability of those 3 different techniques to select the best atlases to combine in the framework of multi-atlas segmentation. First, a leave-one-out experiment is used to optimize our method on a set of 110 manually segmented atlases of hippocampi and find the manifold learning technique and associated manifold parameters that give the best segmentation accuracy. Then, the optimal parameters are used to automatically segment 30 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For our dataset, the selection of atlases with Locally Linear Embedding gives the best results. Our findings show that selection of atlases with manifold learning leads to segmentation accuracy close to or significantly higher than the state-of-the-art method and that accuracy can be increased by fine tuning the manifold learning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号