首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
2.
3.
Little is known about the molecular mechanisms of androgen regulation of the FSHbeta gene; however, studies suggest that it consists of a complex feedback loop that involves multiple mechanisms acting at both the level of the hypothalamus and the pituitary. In the present study, we address androgen regulation of the FSHbeta gene in immortalized gonadotrope cells and investigate the roles of activin and GnRH in androgen action. Using transient transfection assays in the FSHbeta-expressing mouse gonadotrope cell line, LbetaT2, we demonstrate that androgens stimulate expression of an ovine FSHbeta reporter gene in a dose-dependent manner. Mutation of either of two conserved androgen response elements at -245/-231 and -153/-139 within the proximal region of the ovine FSHbeta gene promoter abolishes this stimulation, and androgen receptor binds directly to the -244 ARE in vitro. Androgen induction of the FSHbeta reporter gene is also dependent upon the activin autocrine loop present in the LbetaT2 cells, as well as an activin-response element at -138/-124 of the FSHbeta gene. However, activin regulation of other genes remains unaffected by androgens. In addition, androgens stimulate expression of a mouse GnRH receptor reporter gene, and thus may indirectly augment the response of the FSHbeta gene to GnRH. Taken together, these data demonstrate that, in mouse gonadotropes, androgens act directly on the ovine FSHbeta gene to stimulate expression by a mechanism that is dependent upon activin, as well as acting indirectly, potentially through a second mechanism that may be dependent upon induction of GnRH receptor.  相似文献   

4.
5.
6.
7.
8.
9.
HO-1 (heme oxygenase-1) is an inducible microsomal enzyme that catalyzes the degradation of pro-oxidant heme. The goal of this study was to characterize a minimal enhancer region within the human HO-1 gene and delineate its role in modulating HO-1 expression by participation with its promoter elements in renal epithelial cells. Deletion analysis and site-directed mutagenesis identified a 220-bp minimal enhancer in intron 1 of the HO-1 gene, which regulates hemin-mediated HO-1 gene expression. Small interfering RNA, decoy oligonucleotides, site-directed mutagenesis, and chromatin immunoprecipitation assays confirmed the functional interaction of Sp1 with a consensus binding sequence within the 220-bp region. Mutations of regulatory elements within the −4.5 kb promoter region (a cyclic AMP response and a downstream NF-E2/AP-1 element, both located at −4.0 kb, and/or an E-box sequence located at −44 bp) resulted in the loss of enhancer activity. A chromosome conformation capture assay performed in human renal epithelial (HK-2) cells demonstrated hemin-inducible chromatin looping between the intronic enhancer and the −4.0 kb promoter region in a time-dependent manner. Restriction digestion with ApaLI (which cleaves the 220-bp enhancer) led to a loss of stimulus-dependent chromatin looping. Sp1 small interfering RNA and mithramycin A, a Sp1 binding site inhibitor, resulted in loss of the loop formation between the intronic enhancer and the distal HO-1 promoter by the chromosome conformation capture assay. These results provide novel insight into the complex molecular interactions that underlie human HO-1 regulation in renal epithelial cells.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号