首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Asexuality has major theoretical advantages over sexual reproduction. Nevertheless, obligately asexual metazoan lineages seldom endure over evolutionary time. The Red Queen hypothesis posits that their limited capacity to generate genetic novelty leads to extermination by rapidly evolving parasites and pathogens. At first glance, rotifers of the class Bdelloidea appear to contradict this view: they have reproduced asexually for over 30 Myr without being overwhelmed by parasites. However, there are special ecological conditions under which Red Queen models can accommodate this unusual outcome. If hosts disperse rapidly within a structured metapopulation during a parasite‐free life stage, then in principle they can become spatiotemporally decoupled from coevolving antagonists, and persist without sex. Intriguingly, bdelloid rotifers form dormant propagules when desiccated, which disperse easily by wind. In previous experiments, 7 days of desiccation and wind dispersal removed a fungal parasite from populations of one bdelloid species, allowing them to disperse independently. Here, I extend this finding to two additional bdelloid species and five more fungal parasites, and demonstrate its robustness under various desiccation regimes, and in the presence of multiple parasites. Results support the hypothesis that the unusual physiology of anciently asexual bdelloid rotifers helps them escape fungal parasites in space and time. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 564–574.  相似文献   

2.
Asexual lineages can grow at a faster rate than sexual lineages. Why then is sexual reproduction so widespread? Much empirical evidence supports the Red Queen hypothesis. Under this hypothesis, coevolving parasites favour sexual reproduction by adapting to infect common asexual clones and driving them down in frequency. One limitation, however, seems to challenge the generality of the Red Queen: in theoretical models, parasites must be very virulent to maintain sex. Moreover, experiments show virulence to be unstable, readily shifting in response to environmental conditions. Does variation in virulence further limit the ability of coevolving parasites to maintain sex? To address this question, we simulated temporal variation in virulence and evaluated the outcome of competition between sexual and asexual females. We found that variation in virulence did not limit the ability of coevolving parasites to maintain sex. In fact, relatively high variation in virulence promoted parasite‐mediated maintenance of sex. With sufficient variation, sexual females persisted even when mean virulence fell well below the threshold virulence required to maintain sex under constant conditions. We conclude that natural variation in virulence does not limit the relevance of the Red Queen hypothesis for natural populations; on the contrary, it could expand the range of conditions over which coevolving parasites can maintain sex.  相似文献   

3.
Evolutionary biology has yet to reconcile the ubiquity of sex with its costs relative to asexual reproduction. Here, we test the hypothesis that coevolving parasites maintain sex in their hosts. Specifically, we examined the distributions of sexual reproduction and susceptibility to local parasites within a single population of freshwater snails (Potamopyrgus antipodarum). Susceptibility to local trematode parasites (Microphallus sp.) is a relative measure of the strength of coevolutionary selection in this system. Thus, if coevolving parasites maintain sex, sexual snails should be common where susceptibility is high. We tested this prediction in a mixed population of sexual and asexual snails by measuring the susceptibility of snails from multiple sites in a lake. Consistent with the prediction, the frequency of sexual snails was tightly and positively correlated with susceptibility to local parasites. Strikingly, in just two years, asexual females increased in frequency at sites where susceptibility declined. We also found that the frequency of sexual females covaries more strongly with susceptibility than with the prevalence of Microphallus infection in the field. In linking susceptibility to the frequency of sexual hosts, our results directly implicate spatial variation in coevolutionary selection in driving the geographic mosaic of sex.  相似文献   

4.
The Red Queen hypothesis (RQH) predicts that parasite‐mediated selection will maintain sexual individuals in the face of competition from asexual lineages. The prediction is that sexual individuals will be difficult targets for coevolving parasites if they give rise to more genetically diverse offspring than asexual lineages. However, increasing host genetic diversity is known to suppress parasite spread, which could provide a short‐term advantage to clonal lineages and lead to the extinction of sex. We test these ideas using a stochastic individual‐based model. We find that if parasites are readily transmissible, then sex is most likely to be maintained when host diversity is high, in agreement with the RQH. If transmission rates are lower, however, we find that sexual populations are most likely to persist for intermediate levels of diversity. Our findings thus highlight the importance of genetic diversity and its impact on epidemiological dynamics for the maintenance of sex by parasites.  相似文献   

5.
High dispersal rates between patches in spatially structured populations can impede diversification and homogenize diversity. These homogenizing effects of dispersal are likely to be enhanced by coevolving parasites that impose strong selection on hosts for resistance. However, the interactive effects of dispersal and parasites on host diversification have never been tested. We used spatially structured, experimental populations of the bacterium Pseudomonas fluorescens, cultured with or without the phage SBW25Ф2 under three levels of dispersal (none, localized or global), and quantified diversity in terms of evolved bacterial colony morphologies after approximately 100 bacterial generations. We demonstrate that higher levels of colony morphology richness evolved in the presence of phage, and that dispersal reduced diversity most strongly in the presence of phage. Thus, our results suggest that, while parasites can drive host diversification, host populations coevolving with parasites are more prone to homogenization through dispersal.  相似文献   

6.
The long-term persistence of the ‘ancient asexual’ bdelloid rotifers, a clade of small aquatic invertebrates, is often tied to their ability to enter anhydrobiosis. This ability has both clear benefits (e.g. survival of desiccating conditions), but offers considerable costs (e.g. subsequent repair of the genome as well as physiological and metabolic costs to re-establish the phenotype). Despite these costs, several studies show that the time spent dry is effectively ignored with respect to life expectancy (the Sleeping Beauty hypothesis) and that reconstruction of the genome after a desiccation event might even be necessary to repair mistakes accumulated in it from obligate parthenogenesis while the animals were active. We propose that this genomic repair might not derive exclusively because desiccation per se, but could also result from genetic exchange that appears to occur between individuals during this time. By comparing individuals of Philodina roseola Ehrenberg, 1832 desiccated in groups versus individually, we document costs to desiccation in the isolated treatment group that impact negatively on lifespan and reproduction. In addition, comparing both groups with continuously active individuals reveals no strong evidence for the Sleeping Beauty hypothesis in this species nor any decline in fitness over a six-month period for the latter group. Finally, many treatment effects are at least partly heritable and were found in the untreated F1 generations. In particular, individuals desiccated in groups and their offspring could both reproduce faster than the offspring of continuously active individuals. Thus, our results offer additional support for the hypothesis of genetic exchange occurring during desiccation events in P. roseola and highlight the importance of considering this factor, and desiccation in general, in explaining bdelloid fitness. Moreover, our results provide additional context for understanding how the genetic information of bdelloids is ultimately shaped.  相似文献   

7.
Ricci  Claudia 《Hydrobiologia》2017,785(1):277-291

Bdelloid rotifers are mostly known for two peculiarities, continuous parthenogenetic reproduction and dormancy in response to habitat desiccation, a phenomenon named anhydrobiosis. These uncommon traits earned them the names of ‘evolutionary scandals’ and ‘sleeping beauties’, respectively. Relevant aspects of bdelloid biology have recently been described that connect parthenogenesis to anhydrobiosis and that might account for their evolutionary survival in spite of the conservative reproduction. In the present study, I explore recent literature, in the attempt to disentangle the apparent incongruency between the apomictic reproduction and the presumed long-term evolutionary survival of bdelloid species. Recent results remarkably improved our knowledge of bdelloid population biology, genetics, and molecular biology. The most relevant findings concern (i) acquisition of foreign genes through horizontal transfer, (ii) presence of divergent sequences possibly corresponding to ancient gene duplications and (iii) capacity to escape parasites: events that appear to be connected with dormancy. I also address the results of recent studies on the relationships between bdelloids and other rotifers, including acanthocephalans, in an attempt to highlight similarities and differences that should be clarified to better understand phylogenetic relationship among the Rotifera sensu lato.

  相似文献   

8.
Why organisms diversify into discrete species instead of showing a continuum of genotypic and phenotypic forms is an important yet rarely studied question in speciation biology. Does species discreteness come from adaptation to fill discrete niches or from interspecific gaps generated by reproductive isolation? We investigate the importance of reproductive isolation by comparing genetic discreteness, in terms of intra‐ and interspecific variation, between facultatively sexual monogonont rotifers and obligately asexual bdelloid rotifers. We calculated the age (phylogenetic distance) and average pairwise genetic distance (raw distance) within and among evolutionarily significant units of diversity in six bdelloid clades and seven monogonont clades sampled for 4211 individuals in total. We find that monogonont species are more discrete than bdelloid species with respect to divergence between species but exhibit similar levels of intraspecific variation (species cohesiveness). This pattern arises because bdelloids have diversified into discrete genetic clusters at a faster net rate than monogononts. Although sampling biases or differences in ecology that are independent of sexuality might also affect these patterns, the results are consistent with the hypothesis that bdelloids diversified at a faster rate into less discrete species because their diversification does not depend on the evolution of reproductive isolation.  相似文献   

9.
Spore characteristics of wood-inhabiting fungi suggest that wind is their predominant dispersal vector. However, since they are restricted to ephemeral habitats, colonizing new patches should benefit from dispersal by animals with similar habitat preferences because the directed, resource-searching movement of animals increases the likelihood of reaching suitable habitats. Here we determine which fungal guilds are carried by wood-inhabiting beetles and what influences beetle-associated fungal communities. High-throughput sequencing identified >1800 fungal taxa from beetle communities that emerged from 64 experimental logs. Beetle-associated fungi included mutualistic, decomposing, pathogenic and mycorrhizal fungi; decomposers were the most diverse. Partial-procrustes analysis revealed that the total beetle-associated community and mutualists were correlated (p ≤ 0.05) with beetle community composition and decomposers were marginally correlated (p ≤ 0.10) with beetle community composition. All three groups were marginally correlated with the total fungal communities that inhabit the dead wood. Our results show that beetles carry a broad range of wood-inhabiting fungi and beetle-associated fungal communities are determined by environmental factors and the vectoring beetle community and to some degree by the fungal source community. This suggests that wood-inhabiting beetles contribute to fungal dispersal, including directed dispersal, which could affect fungal community assembly and ecosystem processes like wood decomposition.  相似文献   

10.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

11.
We studied the role of host ploidy and parasite exposure on immune defence allocation in a snail-trematode system (Potamopyrgus antipodarum-Microphallus sp.). In the field, haemocyte (the defence cell) concentration was lowest in deep-water habitats where infection is relatively low and highest in shallow-water habitats where infection is common. Because the frequency of asexual triploid snails is positively correlated with depth, we also experimentally studied the role of ploidy by exposing both diploid sexual and triploid asexual snails to Microphallus eggs. We found that triploid snails had lower haemocyte concentrations than did diploids in both parasite-addition and parasite-free treatments. We also found that both triploids and diploids increased their numbers of large granular haemocytes at similar rates after parasite exposure. Because triploid P. antipodarum have been shown to be more resistant to allopatric parasites than diploids, the current results suggest that the increased resistance of triploids is because of intrinsic genetic properties rather than to greater allocation to defence cells. This finding is consistent with recent theory on the advantages of increased ploidy for hosts combating coevolving parasites.  相似文献   

12.
The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind‐exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge‐to‐snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag‐encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.  相似文献   

13.
Species concepts and definitions have been a long-standing debate in evolutionary biology since before Darwin, and almost all proposed solutions are based upon grouping and clustering, with species conceived as somehow biological distinct entities, originated and maintained mainly by reproductive isolation. Lacking reproductive exchange, asexual organisms such as bdelloid rotifers, the best-supported clade of so-called 'ancient asexuals', pose an interesting challenge to debates over the reality of species. However, few data are available on bdelloid rotifers. The only evidence has been that bdelloid species have been more consistently recognised than in their sister sexual group, the monogonont rotifers, across successive taxonomic treatments, but this is confounded by the much lesser degree of taxonomic interest in bdelloids. We applied geometric morphometrics analyses on shape and size of hard masticatory pieces, named trophi, of 1420 bdelloids, belonging to 48 populations of eight traditional species, to test the hypothesis of recognisability of bdelloids. Our morphological analysis confirms that traditional bdelloid species are separated distinct entities, possessing trophi morphologies divided by gaps between taxa, similar to patterns of morphological features in sexually reproducing organisms. In common with most microscopic understudied organisms, bdelloid rotifers harbour much previously undescribed diversity: we found significant differences in trophi morphology within traditional species, revealing the existence of cryptic taxa, similar to those also found in facultatively sexual monogonont rotifers. We confirm that recognisability in bdelloids is not qualitatively different from other small understudied animals such as monogononts, and that sexual versus asexual reproduction does not lead to differences in morphological diversity patterns, as previously suggested based on interpretation of taxonomic revisions.  相似文献   

14.
Unisexual, female- or male-biased populations are common among some clonal plants. Within and among populations, the relative frequencies of males and females can be influenced by sex-specific demographic patterns that, in turn, can be a consequence of life-history characteristics. The objectives of this study were to describe (1)  population sex-ratio patterns among habitat patches along a river, and (2)  sex-specific patterns of and correlations among life-history clonal traits including: growth rates, number of meristematic tips and asexual reproduction in the dioecious liverwort, Marchantia inflexa . In Trinidad, a section of a stream was surveyed for the occurrence of female and male sex expressing thalli among habitat patches, and habitat characteristics (canopy openness and patch size) were recorded. The numbers of female and male inflorescences were obtained also. Of the 209 patches observed in the field, 83% did not contain sex expressing thalli, 9% contained thalli of both sexes, and the rest contained only female- (4%) or male-expressing (4%) thalli. Sex expression was less common among small patches, and there was a tendency for sex expression to be less likely among patches with the lowest canopy openness. The proportion of male inflorescences among the bisexual patches ranged from 0.22 to 0.80. In a greenhouse, we planted gemmae (asexual propagules) from field-collected isolates: ten female and eight male. On six occasions, we harvested replicates of each isolate to estimate isolate trait means. Females grew faster, produced more meristematic tips and had lower levels of asexual reproduction than males. Number of meristematic tips was negatively correlated with asexual reproduction and positively correlated with growth rate. These sex-specific patterns may lead to the high frequency of single sex patches as well as biased adult population sex ratios that are observed in the field.  相似文献   

15.
Rotifers of Class Bdelloidea are abundant freshwater invertebrates known for their remarkable ability to survive desiccation and their lack of males and meiosis. Sequencing and annotation of approximately 50-kb regions containing the four hsp82 heat shock genes of the bdelloid Philodina roseola, each located on a separate chromosome, have suggested that its genome is that of a degenerate tetraploid. In order to determine whether a similar structure exists in a bdelloid distantly related to P. roseola and if degenerate tetraploidy was established before the two species separated, we sequenced regions containing the hsp82 genes of a bdelloid belonging to a different family, Adineta vaga, and the histone gene clusters of P. roseola and A. vaga. Our findings are entirely consistent with degenerate tetraploidy and show that it was established before the two bdelloid families diverged and therefore probably before the bdelloid radiation.  相似文献   

16.
Dolgin ES  Charlesworth B 《Genetics》2006,174(2):817-827
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.  相似文献   

17.
Some eukaryotes, including bdelloid rotifer species, are able to withstand desiccation by entering a state of suspended animation. In this ametabolic condition, known as anhydrobiosis, they can remain viable for extended periods, perhaps decades, but resume normal activities on rehydration. Anhydrobiosis is thought to require accumulation of the non-reducing disaccharides trehalose (in animals and fungi) or sucrose (in plant seeds and resurrection plants), which may protect proteins and membranes by acting as water replacement molecules and vitrifying agents. However, in clone cultures of bdelloid rotifers Philodina roseola and Adineta vaga, we were unable to detect trehalose or other disaccharides in either control or dehydrating animals, as determined by gas chromatography. Indeed, trehalose synthase genes (tps) were not detected in these rotifer genomes, suggesting that bdelloids might not have the capacity to produce trehalose under any circumstances. This is in sharp contrast to other anhydrobiotic animals such as nematodes and brine shrimp cysts, where trehalose is present during desiccation. Instead, we suggest that adaptations involving proteins might be more important than those involving small biochemicals in rotifer anhydrobiosis: on dehydration, P. roseola upregulates a hydrophilic protein related to the late embryogenesis abundant (LEA) proteins associated with desiccation tolerance in plants. Since LEA-like proteins have also been implicated in the desiccation tolerance of nematodes and micro-organisms, it seems that hydrophilic protein biosynthesis represents a common element of anhydrobiosis across several biological kingdoms.  相似文献   

18.
19.
20.
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号