首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Descemet’s Membrane Endothelial Keratoplasty (DMEK) is a form of corneal transplantation in which only a single cell layer, the corneal endothelium, along with its basement membrane (Descemet''s membrane) is introduced onto the recipient''s posterior stroma3. Unlike Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK), where additional donor stroma is introduced, no unnatural stroma-to-stroma interface is created. As a result, the natural anatomy of the cornea is preserved as much as possible allowing for improved recovery time and visual acuity4. Endothelial Keratoplasty (EK) is the procedure of choice for treatment of endothelial dysfunction. The advantages of EK include rapid recovery of vision, preservation of ocular integrity and minimal refractive change due to use of a small, peripheral incision1. DSAEK utilizes donor tissue prepared with partial thickness stroma and endothelium. The rapid success and utilization of this procedure can be attributed to availability of eye-bank prepared precut tissue. The benefits of eye-bank preparation of donor tissue include elimination of need for specialized equipment in the operating room and availability of back up donor tissue in case of tissue perforation during preparation. In addition, high volume preparation of donor tissue by eye-bank technicians may provide improved quality of donor tissue. DSAEK may have limited best corrected visual acuity due to creation of a stromal interface between the donor and recipient cornea. Elimination of this interface with transplantation of only donor Descemet''s membrane and endothelium in DMEK may improve visual outcomes and reduce complications after EK5. Similar to DSAEK, long term success and acceptance of DMEK is dependent on ease of availability of precut, eye-bank prepared donor tissue. Here we present a stepwise approach to donor tissue preparation which may reduce some barriers eye-banks face in providing DMEK grafts.  相似文献   

2.
The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.  相似文献   

3.
Corneal grafts for Descemet’s Stripping Automated Endothelial Keratoplasty are commonly prepared using mechanical microkeratomes. However, the cuts produced in such way render corneal lenticules that are thinner centrally than peripherally, thus inducing a hyperopic shift. Here we describe a novel device for preparing donor corneal grafts, in which a single low-energy femtosecond laser system is used as both a light source for optical coherence tomography and for cutting the graft illuminating from the endothelial side. The same laser is first utilized to obtain three-dimensional optical coherence tomography images of the donor tissue for guiding the dissection and obtaining grafts of uniform thickness with no applanation or contact. This device allows an optimal procedure for preparing consistently thin posterior grafts for transplantation.  相似文献   

4.
5.
Abstract

Corneal transparency is maintained by the corneal endothelium through its barrier and ionic pump function. However, this function could be compromised with age and variety of diseases and trauma, leading to cornea dycompensation, corneal edema, bullous keratopathy and even loss of visual acuity. So far, a lot of measures have been proposed to solve the problem through promoting the corneal endothelial cells (CECs) proliferation both in vivo and in vitro. However, the exact molecular mechanism regarding the proliferation potential as well as associated phenotype maintenance of CECs has not been well clarified. Accordingly, we will review the studies outlined the signal transduction pathways that were involved in the process of CECs proliferation, which is an important and relatively seldom touched research direction for future new therapies of corneal endothelium dysfunction. By operating the crucial signaling molecular in these pathways, we anticipate to activate or block the signaling pathways and thus help engineering CEC monolayer for clinical transplantation.  相似文献   

6.
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.  相似文献   

7.
Corneal endothelial dysfunctions occurring in patients with Fuchs'' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs) has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs) is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β) receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na+/K+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.  相似文献   

8.
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and “pump” functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.  相似文献   

9.

Background

Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.

Aim

To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury.

Methods

Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.

Results

Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.

Conclusions

CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.  相似文献   

10.
In vitro studies of the transport of colloidal particles by the cornea were carried out on intact corneas of adult rabbits in a chamber described by Donn, Maurice, and Mills (2) in which the epithelial or the endothelial surface of the cornea was exposed to thorium dioxide or saccharated iron oxide under various conditions. These studies confirmed the results of previous work in vivo and allowed modification of the experimental conditions. Particles are pinocytosed at the apical surface of the corneal endothelium and carried around the terminal bar in membrane-bounded vesicles. Basal to the terminal bar these vesicles fuse with the lateral cell margin and their contents are released into the intercellular space, in which they appear to be carried by a one-way flow down to Descemet's membrane and the corneal stroma. Indications that the endothelial transport is an active process are presented by the different pathways of transport into or out of the corneal stroma, as well as by the approximately 70 per cent reduction in transport activity at low temperatures.  相似文献   

11.
BACKGROUND: A lack of standardized assays and consensus of cell definition has lead to a wide variation in the reported range of circulating endothelial cells (CECs). METHODS: An automated rare cell analysis system was used to enumerate nucleated, CD146+/CD105+/CD45- CECs in 4 mL of blood. RESULTS: Recoveries of spiked HUVECs were linear over a range of 0-1,241 cells (R2>or=0.99) with recoveries of >or=70% at each spike level. Correlation coefficient values for interoperator variability and duplicate sample variation were (R2=0.99 and 0.90), respectively. Correlation of CEC counts between tubes 1-2 and 2-3 drawn from the same subject in sequence differed (R2=0.48 and 0.63, respectively). The normal CEC reference range established in 249 healthy donors was 1-20 CECs/mL blood. CEC counts were significantly higher in the 206 metastatic carcinoma patients (P<0.0001). CONCLUSION: CECs can be accurately and reproducibly enumerated in blood and are elevated in metastatic carcinomas compared with healthy donors. Phlebotomy procedures can affect endothelial cell counts.  相似文献   

12.

Purpose

Thickness changes of corneal sub-layers after phacoemulsification were investigated by spectral domain ultra-high resolution optical coherence tomography (UHR-OCT).

Methods

The corneas (n = 26) of 26 age-related cataract surgery patients were studied. UHR-OCT was used to evaluate the thickness of Descemet’s Endothelium Complex (DEC), stroma, Bowman’s layer, epithelium, and full cornea at the center (CCT) before, one day after, and one week after surgery. Non-contact specular microscopy measured CCT, endothelial cell density, and morphology.

Results

The DEC, stroma, Bowman’s layer, and epithelium were visualized by UHR-OCT. Before surgery, the DEC in all cases appeared as a translucent space between two smooth opaque lines. One day after surgery, the posterior corneal surfaces in half of the eyes were wavy and irregular. Compared to the baseline, one day after surgery the thickness increases of the DEC, stroma, and CCT were 4.3 ± 2.6 µm, 25.5 ± 24.9 µm, and 32.1 ± 26.6 µm, respectively (P < 0.001). The morphology of the DEC and the CCT recovered to baseline one week after surgery (P > 0.05), but endothelial cell density was 8.7% less than at baseline. There were no significant changes in Bowman’s layer and epithelium after the operation. The pre-operative DEC thickness was positively correlated with the decreased endothelial cell density at 1 day after surgery (r = 0.55, P = 0.003).

Conclusions

The DEC showed edematous thickening and different degrees of morphological changes after phacoemulsification. The DEC deformation and corneal edema recovered by one week after surgery, which indicated recovery of endothelial function. UHR-OCT is a useful tool to evaluate function of the DEC after phacoemulsification. Pre-operative DEC thickness may indicate the integrity of the endothelium and could be used for predicting endothelial cell loss after phacoemulsification.  相似文献   

13.

Background

Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet’s membrane, in the posterior cornea.

Methodology/Principal Findings

We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet’s membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats.

Conclusions/Significance

Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.  相似文献   

14.

Background

Pulmonary vasodilators in general and prostacyclin analogues in particular have improved the outcome of patients with pulmonary arterial hypertension (PAH). Endothelial dysfunction is a key feature of PAH and we previously described that circulating endothelial cell (CEC) level could be used as a biomarker of endothelial dysfunction in PAH. We now hypothesized that an efficient PAH-specific vasodilator therapy might decrease CEC level.

Methods/Results

CECs were prospectively quantified by immunomagnetic separation with mAb CD146-coated beads in peripheral blood from children with idiopathic PAH (iPAH, n = 30) or PAH secondary to congenital heart disease (PAH-CHD, n = 30): before, after treatment and during follow up. Controls were 23 children with reversible PAH. Oral treatment with endothelin receptor antagonists (ERA) and/or phosphodiesterase 5 inhibitors (PDE5) significantly reduced CEC counts in children. In 10 children with refractory PAH despite oral combination therapy, subcutaneous (SC) treprostinil was added and we observed a significant decrease in CEC counts during the first month of such treatment. CECs were quantified during a 6 to 36 month-follow-up after initiation of SC treprostinil and we found that CEC counts changed over time, with rising counts always preceding clinical deterioration.

Conclusion

CECs might be useful as a biomarker during follow-up of pediatric iPAH and PAH-CHD to assess response to treatment and to anticipate clinical worsening.  相似文献   

15.
Endothelial cell senescence likely plays a key role in age-associated vascular diseases. A close relationship between in vitro and in vivo senescence of endothelial cells has been established. Therefore, elucidating the structural and functional changes occurring during long-term cultures of endothelial cells would contribute to clarifying the pathogenesis of vascular disorders in the elderly. We investigated the effects of replicative senescence on the architecture of bovine aortic vs microvascular endothelial cells. A marked increase in cell area was observed in both cell types, whereas dramatic morphological alterations were detected in microvascular endothelial cells only. The latter also showed age-associated reorganization of the actin cytoskeleton. Finally, both aortic and microvascular endothelial cells lost their migratory response to basic fibroblast growth factor with age. Our results highlight dramatic structural and functional alterations in senescent endothelial cells. Such rearrangements might account for in vivo endothelial cell alterations involved in age-associated vascular dysfunction.  相似文献   

16.
The relationship between the rates of increase of corneal protein fractions and incorporation of labeled precursors has been examined during embryonic and early posthatching development of the chick corneal stroma. Non-collagen protein increased gradually from 9 through 20 days of incubation. Collagen accumulated approximately logarithmically through the 19th day, the most rapid rate occurring between 13 and 20 days of incubation. The rates at which labeled amino acids are incorporated into collagen in vivo and in vitro undergo marked changes during the last week of embryonic development, corresponding closely to the rate of collagen accumulation in vivo; whereas incorporation into non-collagen protein changes much less markedly. Changes in the rate of incorporation of precursors into collagen are not due to changes in the rate of conversion of collagen from the soluble to insoluble form, or to changes in the endogenous amino acid pool size. Chick embryo corneal stroma collagen turns over very slowly, if at all. Non-collagen protein turns over more rapidly. An increase in cell number, as indicated by DNA content, does not account for the increased rate of collagen synthesis between the 9th and 16th day of incubation. It is concluded that the observed changes in collagen synthesis reflect changing activities in the individual cornea fibroblasts. These activities are comparable in the intact tissue in vivo and in isolated corneas in vitro.  相似文献   

17.

Purpose

We sought to identify the anti-angiogenic molecule expressed in corneal keratocytes that is responsible for maintaining the avascularity of the cornea.

Methods

Human umbilical vein endothelial cells (HUVECs) were cultured with either human dermal fibroblasts or with human corneal keratocytes under serum-free conditions. The areas that exhibited blood vessel formation were estimated by immunostaining the cultures with an antitibody against CD31, a blood vessel marker. We also performed microarray gene-expression analysis and selected one molecule, angiopoietin-like 7 (ANGPTL7) for further functional studies conducted with the keratocytes and in vivo in mice.

Results

Areas showing blood vessel formation in normal serum-free medium were conditions were markedly smaller when HUVECs were co-cultured with corneal keratocytes than when they were co-cultured with the dermal fibroblasts under the same conditions. Microarray analysis revealed that ANGPTL7 expression was higher in keratocytes than in dermal fibroblasts. In vitro, inhibiting ANGPTL7 expression by using a specific siRNA led to greater tube formation than did the transfection of cells with a control siRNA, and this increase in tube formation was abolished when recombinant ANGPTL7 protein was added to the cultures. In vivo, intrastromal injections of an ANGPTL7 PshRNA into the avascular corneal stroma of mice resulted in the growth of blood vessels.

Conclusions

ANGPTL7, which is abundantly expressed in keratocytes, plays a major role in maintaining corneal avascularity and transparency.  相似文献   

18.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1.Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability. In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.  相似文献   

19.
Reagents which can promote the proliferation, adhesion and migration of cultured corneal endothelial cells (CECs) will be helpful for the treatment of reduced visual acuity due to CECs deficiency. The objectives of this study were to investigate the potential use of an inhibitor of Rho-associated protein kinase (ROCK), Y-27632, to cultured bovine corneal endothelial cells (B-CECs) and evaluated its effects on the proliferation, adhesion and migration of B-CECs. The proliferation of cultured B-CECs was moderately enhanced by 10 μM Y-27632. Y-27632 induced fibroblast-like morphological changes in the cultured B-CECs and normal cell morphology could recover after Y-27632 removal. In addition, Y-27632 was found to significantly enhance the adhesion and migration of B-CECs. Furthermore, the hanging drop aggregation assay showed that Y-27632 promoted B-CECs to form cellular networks and sheets, which proliferated along the liquid–air interface and migrated to the surface of the lid of dish. Our study demonstrated that Y-27632 is a potentially powerful reagent which can enhance the proliferation of cultured B-CECs. Y-27632 will be useful in CEC injection therapy and topical application for CEC deficiency.  相似文献   

20.
Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号