首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Using Avena sativa L. cv. Victory oat seedlings and excised p-1 stem segments (including the p-1 and p-2 internodes) the effect of exogenously supplied ethylene and the removal of ethylene on internodal extension and gravitropic bending was assessed. Similarly, the ability of the excised system to respond to gravistimulation was assessed in the presence of inhibitors of ethylene action (AgNO3) and ethylene synthesis (3,5-diiodo-4-hydroxybenzoic acid and benzyl isothiocyanate; BITC). The production of ethylene from both intact and excised systems was also measured from 0 to 48 h after gravistimulation, relative to vertical controls. Although gravitropic curvature is initiated, and indeed enters the most rapid phase of upward bending during the first 6 h, there is no difference in ethylene production between vertical and geostimulated plants during this period. The ethylene production of gravistimulated plants rises sharply to a maximum at 24 h, then decreases steeply to almost the control level by 48 h, at which time the rate of upward curvature is diminishing. Neither the addition nor removal of ethylene, nor the addition of inhibitors affecting ethylene-action (AgNO3) or synthesis (DIHB) influence gravitropic bending or internodal extension in excised segments. Although the ethylene synthesis inhibitor BITC showed down the rate of upward bending, this effect could not be reversed by addition of ethylene. We conclude that the burst in ethylene production that develops in leaf-sheath bases (pulvini) after they have started to curve upwards is not primary to the induction of curvature. We further suggest that ethylene has no major effect or role in the induction of upward bending after gravistimulation. The metabolism of high specific activity gibberellin A1 ([3H]-GA1) in the excised system was assessed during 1, 2 and 4 h of gravistimulation. Changes in endogenous GAs and GA metabolism have been shown previously to be correlated (at the later stages) with gravistimulated bending in intact Avena shoots. The excised segments ‘leaked’ free [3H]-GAs and [3H]-GA glucosyl conjugate-like substances into the bathing medium, and this was a confounding factor. Nevertheless, gravistimulated stem segments, and especially the bottom half of the segment, were significantly less leaky then vertical segments. Thus, just 1 h after gravistimulation, bottom segment halves retained 22% more precursor [3H]-GA1, 36% more free [3H]-GA-like metabolites, and 48% more [3H]-GA glucosyl conjugate-like metabolites than vertical segments. In contrast, the 1 h gravistimulated top halves retained slightly less (1–4%) precursor [3H]-GA and free [3H]-GA metabolites, but 21% more [3H]-GA glucosyl conjugate-like radioactivity than vertical segments.  相似文献   

2.
Gravicurvature in water- and auxin (IAA)-incubated coleoptiles of rye ( Secale cereale L.) is similar, despite a general strongly enhancing effect of exogenous IAA on the overall (cell) elongation of these organs. Longitudinally split coleoptiles or isolated longitudinally halved coleoptiles (horizontally positioned as upper or lower halves) respond gravitropically in the same way as water-incubated intact coleoptiles, irrespective of whether the halves are incubated in distilled water or IAA. A new model for the principal mechanism of regulation of gravitropic growth is proposed which depends on, yet does not involve, the redistribution of IAA as the means for gravistimulated differential growth, as postulated by the Cholodny-Went hypothesis (CWH). It is based on a gravimediated temporarily restrained infiltration of IAA-induced wall-loosening factors into the growth-limiting outer epidermal walls of the concave organ flank.  相似文献   

3.
Isoperoxidase B 1 isolated from winter wheat (Triticum aestivum L., cv. Jubilar) seedlings was shown to catalyze ethylene formation from α-keto, γ-methylmercaptobutyric acid (KMBA). In the presence of Mn2+, indole-3-acetic acid (IAA), andp-coumaric acid, the kinetics by isoperoxidase B 1 catalyzed conversion of KMBA into ethylene and other products was similar to that of IAA oxidation. The reaction rate was therefore controlled by IAA through its electrondonating properties. Exogenous IAA induced ethylene formation in the segments of etiolated wheat coleoptiles. IAA-induced ethylene production was enhanced by L-methionine and mitomycin C. Aminoethoxy-analogue of rhizobitoxine, ferulic acid, sodium benzoate, cycloheximide and actinomyoin D exhibited significant inhibitory effects. These data indicate that the overall reaction mechanism in coleoptile segments involves RNA and protein synthesis. The site of IAA action is not specific; 2,4-dichlorophenoxyacetic, α-naphthylacetic and indole-3-butyric acids, respectively, possessed comparable inductive effect as IAA. Indole-3-propionic acid, indole, L-tryptophan and glucobrassicin had only low inductive efficiency, and moreover indole and L-tryptophan slowed down IAA-induced ethylene formation.  相似文献   

4.
The auxin indole-3-acetic acid (IAA) is known to promote the biosynthesis of active gibberellins (GAs) in barley ( Hordeum vulgare ). We therefore investigated the possibility that this interaction might contribute to the gravitropic response of barley leaf sheath pulvini. Barley plants at the inflorescence stage were gravistimulated for varying times, and the pulvini were then separated into upper and lower halves for quantification of IAA and GAs by GC-MS. Consistent with the Cholodny–Went theory, the lower portion contained more IAA than did the upper portion. This difference was detected as early as 2.5 h after the start of gravistimulation, and bending was also observed at this stage. At later time points tested (6 h and 24 h), but not at 2.5 h or 3 h, the higher auxin content of the lower half was associated with a higher level of GA1, the main bioactive GA in barley. Consistent with that result, the expression of Hv3ox2 , which encodes a key enzyme for the conversion of GA20 to GA1, was higher in the lower side than in the upper, after 6 h. It is suggested that in gravistimulated leaf sheath pulvini, auxin accumulates in the lower side, leading to a higher level of GA1, which contributes to the bending response. Further evidence that GAs play a role in the gravitropic response was obtained from GA-related mutants, including the elongated sln1c mutant, in which GA signalling is constitutive. Pulvinar bending in the sln1c mutant was greater than in the wild-type. This result indicates that in the lower side of the gravistimulated pulvinus, the relatively high level of bioactive GA facilitates, but does not mediate, the bending response.  相似文献   

5.
Jones SE  Demeo JS  Davies NW  Noonan SE  Ross JJ 《Planta》2005,222(3):530-534
The pin1-1 mutant of Arabidopsis thaliana has been pivotal for studies on auxin transport and on the role of auxin in plant development. It was reported previously that when whole shoots were analysed, levels of the major auxin, indole-3-acetic acid (IAA) were dramatically reduced in the mutant, compared with the WT (Okada et al. 1991). The cloning of PIN1, however, provided evidence that this gene encodes a facilitator of auxin efflux, raising the question of how the pin1-1 mutation might reduce overall IAA levels as well as IAA transport. We therefore re-examined IAA levels in individual parts of pin1-1 and WT plants, focusing on inflorescence stems. Our data show that there is in fact no systemic IAA deficiency in the mutant. The previously reported difference between mutant and WT may have been due to the inclusion of reproductive structures in the WT harvest: we show here that the inflorescence itself contains high levels of IAA. We reconcile the normal IAA levels of pin1-1 inflorescence stems with their (previously-reported) reduced ability to transport IAA by presenting evidence that the auxin in mutant stems is not imported from their apical portion. Our data also indicate that levels of another auxin, indole-3-butyric acid (IBA), are very low in stems of the genotypes used in this study.  相似文献   

6.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

7.
Meudt WJ 《Plant physiology》1987,83(1):195-198
Brassinosteroids are steroidal lactones of plant origin that promote growth of a number of plant systems, and particularly the growth induced by auxins. Biologically active brassinosteroids (BR) also promote the growth of gravisensitive hypocotyls of 7-day-old light grown Phaseolus vulgaris when gravistimulated. Brassinolide-mediated promotion of curvature of gravistimulated internodes occurs in the absence of exogenously supplied indole-3-acetic acid (IAA). This is in contrast to the BR-promoted bending of vertically positioned bean hypocotyls, which is dependent upon exogenous IAA. Brassinosteroid treatment increased the graviperception of young internode tissues and the bending of the gravistimulated sections as well as the subsequent reversal of bending after the sections were placed vertically. These results indicate that BR sensitizes bean hypocotyls to gravistimulation and potentiates the action of a growth factor that induces gravitropic growth.  相似文献   

8.
Root hair formation is induced in lettuce seedlings when the seedlings are transferred from a liquid medium at pH 6.0 to one at pH 4.0. Auxin, ethylene, and light are also required for the induction of root hair formation. To investigate the mechanism by which ethylene production is regulated during root hair formation, we isolated three 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase genes (Ls-ACO1, 2, and 3) from lettuce, each of which exists as a single copy in the genome. Analysis of the deduced amino acid sequences of the three ACO proteins as well as a phylogenetic analysis revealed that Ls-ACO3 was the most divergent among the ACO family. Northern hybridization analyses revealed that the mRNA levels of Ls-ACO2, but not Ls-ACO1 and Ls-ACO3, increased in the primary root after the transfer to a pH 4.0 medium. Addition of ACC or indole-3-acetic acid (IAA) to the pH 6.0 medium induced root hair formation, and a concomitant accumulation of Ls-ACO2 mRNA was observed. In contrast, the mRNA levels of Ls-ACO1 and Ls-ACO3 were unaffected by either ACC or IAA treatment. Furthermore, white light irradiation of dark-grown seedlings following the transfer to pH 4.0 medium induced the accumulation of all three ACO mRNAs. However, accumulation of Ls-ACO2 mRNA was also observed in non-irradiated seedlings, suggesting that the expression of Ls-ACO2 was induced not by light but by low pH. These results suggest that among the differentially regulated ACO genes, Ls-ACO2 plays a key role in ethylene production during low-pH-induced root hair formation in lettuce.  相似文献   

9.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

10.
Purified malformin A1 (cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-lle), a cyclicpentapeptide toxin fromAspergillus niger, was applied to the hypocotyl segments of mung bean (Vigna radiata L.) seedlings to investigate its role in regulating ethylene biosynthesis. Production of ethylene was induced by treating the plants with 0.1 mM indole-3-acetic acid (1AA). When 0.1 μM malformin A1 was then applied, ethylene production increased and the activities of two key enzymes for its biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase (ACS) and ACC-oxidase (ACO), were also stimulated. However, at levels of 1 or 10 μM malformin A1, both ethylene production and enzymatic activities were significantly reduced. In the case of ACO,in vitro activity was regulated by malformin A1, independent of ACS activity or the influence of IAA. Furthermore, the conjugate form of ACC, N-malonyl ACC, was significantly promoted by treatment with 0.1 μM malformin A1. These data suggest that malformin A1 can modulate ethylene production through diverse paths and that its effect depends on the concentration of the treatment administered.  相似文献   

11.
Malformins, a small family of cyclic pentapeptides, are active plant growth regulators isolated from the fungusAspergillus niger. We purified malformin A1 from the crude malformin A mixture, and studied its action in the gravitropic response of maize roots. Intact primary roots that had been pretreated vertically with malformin A1 were placed in a humidified box in the horizontal position. Positive curvature (downward) was inhibited in the pretreated roots compared with the control. In addition, we measured the lateral transport of IAA in primary roots. Roots pretreated with malformin A, did not show asymmetric distribution of IAA between the upper and lower sides of the elongation zone. Malformin A, also stimulated ethylene production in maize root segments. Our results had suggested that malformin A1 might inhibit the lateral transport of IAA across the roots from the upper to the lower side because of an increased level of ethylene. Therefore, we placed more IAA on the upper side at the initial phase of gravistimulation. These results were consistent with malformin A1-pretreated roots showing inhibited positive gravitropic curvature.  相似文献   

12.
Cucurbit seedlings potentially develop a peg on each side of the transition zone between the hypocotyl and root. Seedlings grown in a horizontal position suppress the development of the peg on the upper side of the transition zone in response to gravity. It is suggested that this suppression occurs due to a reduction in auxin levels to below the threshold value. We show in this study that the free indole-3-acetic acid (IAA) content is low, while IAA conjugates are significantly more abundant in the upper side of the transition zone of gravistimulated seedlings, compared to the lower side. A transient increase in mRNA of the auxin-inducible gene, CS-IAA1, was observed in the excised transition zone. The result suggests that the transition zone is a source of auxin. Cucumber seedlings treated with auxin-transport inhibitors exhibited agravitropic growth and developed a peg on each side of the transition zone. Auxin-transport inhibitors additionally caused an increase in CS-IAA1 mRNA accumulation at the transition zone, indicating a rise in intracellular auxin concentrations due to a block of auxin efflux. To study the involvement of the auxin transport system in peg formation, we isolated the cDNAs of a putative auxin influx carrier, CS-AUX1, and putative efflux carrier, CS-PIN1, from cucumber (Cucumis sativus L.) plants. Both genes (CS-AUX1 in particular) were auxin-inducible. Accumulation of CS-AUX1 and CS-PIN1 mRNAs was observed in vascular tissue, cortex and epidermis of the transition zone. A reduced level of CS-AUX1 mRNA was observed in the upper side of the gravistimulated transition zone, compared with the lower side. It is therefore possible that a balance in the activities of auxin influx and efflux carriers controls intracellular auxin concentration at the transition zone, which results in lateral placement of a peg in cucumber seedlings.Abbreviations HFCA 9-hydroxyfluorene-9-carboxylic acid - IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

13.
This study explores the unique growth-regulatory roles of two naturally occurring auxins, indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA), and their interactions with gibberellin (GA) during early pea (Pisum sativum L.) fruit development. We have previously shown that 4-Cl-IAA can replace the seed requirement in pea pericarp growth (length and fresh weight), whereas IAA had no effect or was inhibitory. When applied simultaneously, gibberellin (GA3 or GA1) and 4-Cl-IAA had a synergistic effect on pericarp growth. In the present study, we found that simultaneous application of IAA and GA3 to deseeded pericarps inhibited GA3-stimulated growth. The inhibitory effect of IAA on GA-stimulated growth was mimicked by treatment with ethephon (ethylene releasing agent), and the inhibitory effects of IAA and ethylene on GA-mediated growth were reversed by silver thiosulfate (STS), an ethylene action inhibitor. Although pretreatment with STS could retard senescence of IAA-treated pericarps, STS pretreatment did not lead to IAA-induced pericarp growth. Although 4-Cl-IAA stimulated growth whereas IAA was ineffective, both auxins induced similar levels of ethylene evolution. However, only 4-Cl-IAA-stimulated growth was insensitive to the effects of ethylene. Gibberellin treatment did not influence the amount of ethylene released from pericarps in the presence or absence of either auxin. We propose a growth regulatory role for 4-Cl-IAA through induction of GA biosynthesis and inhibition of ethylene action. Additionally, ethylene (IAA-induced or IAA-independent) may inhibit GA responses under physiological conditions that limit fruit growth.  相似文献   

14.
It has recently been documented that, compared to untransformed controls, the roots of oilseed rape (Brassica napus L. CV CrGC5) seedlings transformed by Agrobacterium rhizogenes A4 show a reduced gravitropic reaction (Legué et al. 1994, Physiol Plant 91: 559–566). After stimulation at 90°C or 135°, the transformed root tips curve, but never reach a vertical orientation. In the present study, we investigated the causes of reduced gravitropic bending observed in stimulated transformed root tips. First, we localized the gravitropic curvature in normal and in transformed roots after 1.5 h of stimulation. The cells involved in root curvature (target cells) corresponded at the cellular level to the apical part of the zone of increasing cell length. In transformed roots grown in the vertical position, these cells showed a reduction in cell length compared to controls. Because auxin is considered to be the gravitropic mediator, the response of normal and transformed roots to exogenous auxin was studied. Indole-3-acetic acid (IAA) was applied along the first 3 mm using resin beads loaded with the hormone. In comparison to normal roots, transformed roots showed reduced bending toward the bead at all points of bead application. Moreover, the cells which responded to IAA corresponded to the target cells involved in the gravitropic reaction. The level of endogenous IAA was lower in transformed roots. Thus, it was concluded that the modified behavior of transformed roots during gravitropic stimulation could be due to differences either in IAA levels or in reactivity of the target cells to the message from the cap.Abbreviations DEZ distal elongation zone - ELISA enzymelinked immunosorbent assay - T-DNA DNA transferred from Agrobacterium rhizogenes to the plant genome This work was supported by the Centre National d'Etudes Spatiales.  相似文献   

15.
16.
17.
Ethylene at 1.0 and 10.0 cubic centimeters per cubic meter decreased the rate of gravitropic bending in stems of cocklebur (Xanthium strumarium L.) and tomato (Lycopersicon esculentum Mill), but 0.1 cubic centimeter per cubic meter ethylene had little effect. Treating cocklebur plants with 1.0 millimolar aminoethoxyvinylglycine (AVG) (ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cubic centimeter per cubic meter ethylene in the surrounding atmosphere (or applying 0.1% ethephon solution) partially restored the rate of bending of AVG-treated plants. Ethylene increases in bending stems, and AVG inhibits this. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. This was especially true when horizontal stems were physically restrained from bending. Ethylene might promote cell elongation in bottom tissues of a horizontal stem or indicate other factors there (e.g. a large amount of `functioning' auxin). Or top and bottom tissues may become differentially sensitive to ethylene. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect. Acidic ethephon solutions applied to one side of young seedlings of cocklebur, tomato, sunflower (Helianthus annuus L.), and soybean (Glycine max [L.] Merr.) caused bending away from that side, but neutral ethephon solutions did not cause bending. Buffered or unbuffered acid (HCl) caused similar bending. Neutral ethephon solutions produced typical ethylene symptoms (i.e. epinasty, inhibition of stem elongation). HCl or acidic ethephon applied to the top of horizontal stems caused downward bending, but these substances applied to the bottom of such stems inhibited growth and upward bending—an unexpected result.  相似文献   

18.
Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45° angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.  相似文献   

19.
Ultrastructural analyses of the cell walls from top and bottom halves of gravistimulated pulvini from oat leaves show a decrease in the density of material within the cell walls from the lower halves of pulvini after 24 h of gravistimulation. Assays of cellulose synthesis with a 14C-sucrose pulse-chase experiment indicate no difference in the amount of new cellulose synthesized in top compared with bottom halves of gravistimulated pulvini. The highest rate of cellulose synthesis occurs with 12-24 h of gravistimulation. Treatment of graviresponding pulvini with 2,6-dichlorobenzonitrile (DCBN) had only a minor effect on segment gravitropic curvature. We also found that there is no difference in the activities of either glucan synthase I or glucan synthase II in top halves as compared with bottom halves of gravistimulated pulvini. We conclude that the graviresponse in oat stems is not driven by new cell wall synthesis but, rather, by changes in cell wall plasticity and osmotic potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号