首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid replication in DNA Ts mutants of Bacillus subtilis.   总被引:11,自引:0,他引:11  
A G Shivakumar  D Dubnau 《Plasmid》1978,1(3):405-416
In an attempt to increase our understanding of plasmid replication in Bacillus subtilis we determined the effect of various dna Ts mutations [Gass, K. B., and Cozzarelli, N. R. (1973). J. Biol. Chem. 248, 7688–7700; Gross, J. D., Karamata, D., and Hempstead, P. G. (1968). Cold Spring Harbor Symp. Quant. Biol.33, 307–312; Karamata, D., and Gross, J. D. (1970). Mol. Gen. Genet.108, 277–287] on pUB110 replication. pUB110 is a kanamycin resistance plasmid originally isolated in Staphylococcus aureus and introduced into B. subtilis by transformation. At temperatures nonpermissive for chromosomal DNA synthesis dnaA13, dnaB19, dnaC6, dnaC30, dnaD23, dnaE20, and dnaI102 permit replication of the plasmid. In several cases this “amplification” continues until approximately equal amounts of plasmid and chromosomal DNA are present. dnaG34, dnaH151, dnaF133, mut-1, and polC26 affect both pUB110 and host DNA synthesis at nonpermissive temperatures. The last three mutations are known to affect the activity of DNA polymerase III (PolIII). When polC26 is incubated at a nonpermissive temperature, there is an accumulation of plasmid DNA with a density on EtBr-CsCl gradients intermediate between that of covalently closed circular (CCC) and open circular DNA. pUB110 can replicate in a strain which is deficient in DNA polymerase I (PolI). Finally, chloramphenicol (Cm) inhibits the replication of pUB110 as well as of chromosomal DNA.  相似文献   

2.
Summary The role of E. coli dnaB and dnaC protein in the replication of plasmid ColE1 and RSF1030 DNA was investigated in a soluble in vitro system (Staudenbauer, 1976a). Extracts from dnaB and dnaC mutants which are phenotypically DNA initiationor DNA elongation-defective were examined for their replicative capacity. It was found that all mutants tested are deficient in the synthesis of supercoiled plasmid DNA. Deficient extracts of dnaB mutants could be partially complemented by purified dnaB wild type protein but required for full complementation dnaC wild type protein as well. The dnaB wild type protein could be replaced by a P1dnaB analog (ban) protein complexed with a dnaB ts protein. Deficient extracts of dnaC mutants were complemented by purified dnaC wild type protein alone.The in vitro plasmid replication cycle had been separated into an early and late stage (Staudenbauer, 1977). Analysis by CsCl velocity centrifugation of the plasmid DNA synthesized in mutant extracts indicates that the early stage, namely the synthesis of early replicative intermediates, proceeds in all dnaB and dnaC mutants tested. However, replication of the early intermediates during the late stage depends on both the dnaB and dnaC protein. These conclusions were confirmed using inhibitors of DNA synthesis.  相似文献   

3.
Summary The dnaC28 mutant, CT28-3b, is an initiation defective dnaC strain. Extracts of the mutant failed to synthesize DNA in vitro when the strain was incubated at the restrictive temperature for two generation times prior to preparation of the extract. Addition of a complementing extract from a Col-E1::dnaC + hybrid plasmid containing strain or of partially purified dnaC protein resulted in substantial synthesis. Hybridization of the DNA made by these in vitro complementation extracts showed that a significant portion of this DNA was from the region near the chromosomal origin of replication.  相似文献   

4.
D D Womble  R H Rownd 《Plasmid》1979,2(1):79-94
The effects of inhibition of protein and ribonucleic acid (RNA) synthesis on the replication of the plasmids NR1 and F′lac in Escherichia coli were studied. When protein synthesis is inhibited, there is approximately a 25% increase in R plasmid deoxyribonucleic acid (DNA), but this newly synthesized DNA is not recoverable in the covalently closed circular (CCC) form until protein synthesis is allowed to resume. When RNA synthesis is inhibited, there is also approximately a 20% increase in R plasmid DNA, but this DNA is immediately recoverable in the CCC form. F′lac DNA, unlike R plasmid DNA, can continue to replicate for at least a generation time in the absence of protein synthesis, and this F′lac DNA is immediately recoverable in the CCC form.  相似文献   

5.
Analysis of folded chromosomes prepared from amino acid-starved E. coli cells or from a dnaC initiation mutant indicates that a unique structure is associated with completion or near completion of rounds of chromosome replication in E. coli. Chromosomes remain associated with portions of the bacterial cell envelope throughout the DNA replication cycle, but become more rapidly sedimenting as replication proceeds in the absence of reinitiation. Before reinitiation of chromosome replication occurs after restoring required amino acids to amino acid-starved cells or after lowering the temperature in a thermosensitive dnaC mutant, sedimentation velocities of the membrane-associated folded chromosomes decrease substantially. The decrease in sedimentation velocity does not depend on renewed DNA synthesis, but does require the activity of at least the dnaC gene product.  相似文献   

6.
Summary The replication of an F plasmid in a dnaC mutant, thermolabile for initiation of chromosomal replication, has been re-examined using a novel DNA-DNA annealing assay. Plasmid replication ceases rapidly at non-permissive conditions, consistent with a direct role for the dnaC product in the replication of F.  相似文献   

7.
Infection of Escherichia coli with the mutant lig ts2 of bacteriophage Mu at a temperature nonpermissive for this mutant is lethal for the host cells. This effect is insensitive to phage immunity of the host cells, to inhibitors of protein synthesis and is not suppressed in trans in bacterial strains producing the Lig+ active protein. These data suggest that the killing effect of this mutant is different from the other kil functions identified in Mu [1].  相似文献   

8.
9.
A mutant of Escherichia coli K-12, IB10 carrying the ts10 mutation has been isolated. The mutation affects replication and inheritance of pKM101 plasmid. Incubation of the mutant under non-selective conditions of 42 degrees C resulted in the formation of R-cell population. The frequency of temperature-independent clones was 2,1 X 10(-5). The defect of pKM101 replication was shown to result in growth inhibition of host cells at a non-permissive temperature. The host growth only started after elimination of the plasmid. The mechanisms are likely to exist governing the participation of plasmid gene products in processes related to host growth. The influence of ts10 mutation on replication of other plasmids was studied. It was established that ts10 did not affect replication of R6K, RP4 and Flac+ plasmids. However, replication of R15, R205 as well as of pKM101 plasmid stopped under conditions of non-permissive temperature in IB10 mutant. Obviously, ts10 mutation results in defective replication of plasmids only belonging to the N-incompatibility group (IncPN). It is shown that R6K, RP4, Flac+ plasmids are not able to correct pKM101 replication in the mutant at 42 degrees C.  相似文献   

10.
Mutagenized E. coli B/r cells were subjected to a procedure designed to select mutants temperature-sensitive for initiation of deoxyribonucleic acid (DNA) replication. Seventeen mutants exhibiting limited residual DNA synthesis at 42 C were obtained and the dna sites were mapped genetically. Sixteen of the sites map near dnaA, dnaB, and dnaC. One mutant (dna-208) maps in a new location between the trp and his genes. We propose to call this mutant dnaI208. In complementation experiments dnaC+ and dnaI+ were dominant to dnaC and dnaI alleles, respectively. However, dnaA was dominant to the wild-type allele dnaA+. All dnaA mutants and four out of six dnaC mutants could be suppressed by F factor integration. The pattern of suppression was specific for each mutant.  相似文献   

11.
12.
Round of Replication Mutant of a Drug Resistance Factor   总被引:32,自引:27,他引:5       下载免费PDF全文
A derivative of the R factor NR1 (called R12) has been isolated which undergoes an increased number of rounds of replication each division cycle in Proteus mirabilis, Escherichia coli, and Salmonella typhimurium. The alteration resulting in the increased number of copies (round of replication mutation) is associated with the transfer factor component of the R factor. R12 has the same drug resistance pattern as NR1, is the same size as shown by sedimentation in a sucrose gradient and electron microscopy (63 × 106 daltons), and has the same partial denaturation map. The level of the R factor gene product chloramphenicol acetyltransferase has been examined in P. mirabilis and was found to be consistent with gene dosage effects. The plasmid to chromosomal deoxyribonucleic acid ratio of NR1 increases several fold after entry into stationary phase, whereas this ratio for R12 remains approximately constant. Individual copies of R12 are selected at random for replication from a multicopy plasmid pool. A smaller percentage of R12 copies replicate during amino acid starvation than has previously been found for NR1 in similar experiments.  相似文献   

13.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

14.
A recombinant plasmid, R428, between a temperature-sensitive R plasmid, Rts1, and a transfer-deficient mutant of NR1, NR1–4, was isolated. Experiments on stability at higher temperature, transfer frequency, and density profiles of DNAs suggested that R428 is a cointegrate and that the thermosensitivity of Rts1 replication was suppressed.  相似文献   

15.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:10,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

16.
A mutant of bacteriophage P1 that is defective in plasmid maintenance was isolated. P1 seg-101 carries an amber mutation in a region previously implicated in the control of plasmid maintenance. By use of a host bearing a temperature-sensitive suppressor, the dependence of P1 maintenance on the seg-101+ protein product was established. The rates of segregation of cured cells under various conditions suggest a role for the seg-101+ product in the partition of plasmids to daughter cells rather than in the replication of the plasmid. This hypothesis is supported by the observation that P1 seg-101 can drive host chromosomal DNA replication when integrated into the chromosome of a dnaA host under conditions that are nonpermissive for both the seg-101 and dnaA alleles.  相似文献   

17.
D J Roufa 《Cell》1978,13(1):129-138
ts14 is a temperature-sensitive Chinese hamster lung cell mutant that ceases protein biosynthesis within a short time of transfer to nonpermissive temperature (Haralson and Roufa, 1975; Roufa and Haralson, 1975; Roufa and Reed, 1975). This mutant contains a revertible, presumably a point mutation that renders its 60S ribosomal subunit thermolabile (Haralson and Roufa, 1975). In this report, we describe the relationship between the conditional ability of ts14 to synthesize protein during S phase and the replication of its DNA.After transfer to nonpermissive temperature (39°C), where ts14 synthesizes protein at a rate approximately 20 fold less than wild-type cells, synchronous cultures of the mutant performed all the processes required for replication of their DNA. During prolonged incubations at nonpermissive temperature, S phase ts14 completed approximately one round of DNA replication semi-conservatively as judged by density-transfer experiments. Pulse-labeling experiments performed on S phase cells revealed that ts14 synthesized the intermediates of discontinuous DNA replication at nonpermissive and permissive temperatures at similar rates. In these tests, the mutant was not substantially different from wild-type at both culture temperatures. At the nonpermissive temperature, however, ts14 synthesized significantly less nuclear protein (that is, histone) than did wild-type cells, and the mutant's chromatin appeared deficient in histone by virtue of its increased sensitivity to nuclease.  相似文献   

18.
Escherichia coli strains with mutations in genes dnaB, dnaC, and dnaG were tested for their capacity to replicate pSC101 deoxyribonucleic acid (DNA) at a nonpermissive temperature. Only a small amount of radioactive thymine was incorporated into pSC101 DNA in the dna mutants at 42 degrees C, whereas active incorporation into plasmid DNA took place in wild-type strains under the same conditions. The effects of the dnaB and dnaC mutations were greater on plasmid DNA synthesis than on host chromosomal DNA synthesis, suggesting that these gene products are directly involved in the process of pSC101 DNA replication. In dnaG mutants, both plasmid and chromosomal DNA synthesis were blocked soon after the shift to high temperature; although the extent of inhibition of the plasmid DNA synthesis was greater during the early period of temperature shift to 42 degrees C as compared with that of the host DNA synthesis, during the later period it was less. It was found that the number of copies of pSC101 per chromosome in dnaA and dnaC strains, grown at 30 degrees C, was considerably lower than that in wildtype strains, suggesting that the replication of pSC101 in these mutant strains was partially suppressed even under the permissive conditions. No correlation was found between the number of plasmid copies and the tetracycline resistance level of the host bacterium.  相似文献   

19.
Summary Flac maintenance was aberrant at permissive temperature in a temperature-sensitive dnaC mutant of Salmonella typhimurium when the normally resident pLT2 plasmid was present. Flac was, however, efficiently transferred into the dnaC pLT2+ strain and the resulting Flac derivative was almost as efficient in transferring Flac as were dnaC + pLT2+ Flac strains indicating that aberrant Flac maintenance was not associated with appreciable inhibition of transfer replication. A range of F-like plasmids behaved like pLT2 in causing aberrant Flac maintenance when present in the dnaC pLT2- strain. Flac was, however, stably maintained in the dnaC strain in the absence of other plasmids. Although the F-like plasmids destabilized Flac, each was stably maintained when introduced into strain 11G dnaC pLT2+ and pLT2 was also apparently stable under these conditions. The destabilizing effect of pLT2 and other fi + plasmids was not consequent upon their inhibiting the formation of a repressible F transfer component needed for Flac replication in the dnaC strain. Incompatibility between Flac and the other plasmids induced by the dnaC lesion also appeared unlikely to be a cause of the aberrant Flac maintenance. The possibility is discussed that the initiation of Flac replication differs from that of pLT2 and the F-like plasmids with F competing less effectively than the others for the DnaC gene product.  相似文献   

20.
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaBA116V, was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37°C. We demonstrated that at the nonpermissive temperature the DnaBA116V mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaBA116V mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号