首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
细胞凋亡是一种程序化的细胞死亡方式,其信号传导通路分为外源性和内源性两条主要途径,线粒体在内源性细胞凋亡途径中扮演着重要的角色.研究表明,运动可通过调节线粒体介导骨骼肌细胞凋亡的进程,而运动调节线粒体介导骨骼肌细胞凋亡信号通路影响机体细胞生物进程的机制仍有待研究.该文主要阐述了线粒体介导细胞凋亡信号传导通路及运动对其的...  相似文献   

2.
为了考察不同强度的跑台运动对大鼠骨骼肌细胞凋亡的影响及机制,本研究将40只清洁级3月龄雄性SD大鼠随机分为安静组(未进行跑台运动)、低强度组(速度15 m/min,跑动时间30 min)、中强度组(速度20 m/min,跑动时间30 min)和高强度组(速度30 m/min,跑至力竭(30 min)),每组10只,各组大鼠共进行4周的跑台运动。苏木精-伊红(HE)染色显示,安静组、低强度组和中强度组大鼠骨骼肌组织结构均未见异常。然而,高强度组大鼠骨骼肌细胞发生溶解,肌纤维变粗或出现断裂,排列紊乱。低强度和中强度组大鼠骨骼肌超氧化物歧化酶(SOD)和过氧化氢酶(CAT)水平明显高于安静组(p0.05),而高强度组SOD和CAT水平明显低于其他组(p0.05)。低强度和中强度组大鼠骨骼肌丙二醛(MDA)水平明显低于安静组(p0.05),而高强度组MDA水平明显高于其他组(p0.05)。原位末端转移酶标记技术(TUNEL)检测显示,高强度组的细胞凋亡积分光密度(IOD)明显高于其他组(p0.05),而其他组间未见显著差异(p0.05)。Western blotting检测显示,高强度组的JNK、cleaved-caspase 3和Fas蛋白表达水平显著高于其他组(p0.05),而高强度组的Bcl-2蛋白表达水平显著低于其他组(p0.05)。本研究表明中低强度的跑台运动可提高大鼠的抗氧化能力,且不会造成大鼠骨骼肌损伤,而高强度跑台运动可通过促进氧化应激损伤和细胞凋亡来引起大鼠骨骼肌损伤。  相似文献   

3.
4.
离心运动对大鼠骨骼肌细胞凋亡和增殖的影响   总被引:1,自引:0,他引:1  
目的:探讨离心运动对骨骼肌细胞凋亡和增殖的时序性影响。方法:50只8周龄SD大鼠随机分为对照组(C)和运动组(B1,B2,B3,B4)(n=10),运动组进行重复3 d的力竭性离心运动,TUNNEL法检测大鼠肱三头肌内侧头不同恢复时相细胞凋亡情况和免疫组化检测其细胞增殖核抗原(PCNA)的表达。结果:①骨骼肌细胞凋亡出现时序性变化,并与运动性骨骼肌微损伤出现了一致性,运动组凋亡指数明显高于对照组(P<0.05),运动后即刻凋亡指数升高,运动后24 h达到峰值,运动后48 h凋亡指数有所下降。②骨骼肌细胞增殖出现时序性,运动组增殖指数明显高于对照组(P<0.05),运动后即刻增殖指数较高,运动后3 h增殖指数有所下降,运动后24 h增殖指数达到峰值,到运动后48 h下降,但还未恢复到对照组。并与细胞凋亡呈中度相关(P<0.05)。结论:①细胞凋亡是诱发骨骼肌再发性损伤的一个因素。②细胞凋亡可能是骨骼肌细胞再生的一个启动因素。  相似文献   

5.
目的:以丝氨酸蛋白酶Omi为切入点,探究大负荷运动诱导大鼠骨骼肌细胞凋亡的可能机制。方法:126只健康雄性SD大鼠随机分为安静对照组(C),离心运动组(E),单纯阻断组(U),二甲基亚砜(DMSO)组(D),运动阻断组(EU)。除C组外,其余4组随机分为干预后0 h组、12 h组、24 h组、48 h组、72 h组,每组6只。E组与EU组大鼠在跑台上进行坡度为-16°,速度为16 m/min, 90 min的一次性大负荷运动。U组、D组与EU组进行一次性药物干预,给予U组和EU组大鼠腹腔注射1.5μmoL/kg Omi特异性抑制剂Ucf-101,同样给予D组大鼠腹腔注射1.5μmoL/kg的0.5%DMSO,于实验后不同时间点分批取比目鱼肌,检测其Caspase-3,-8,-9,-12的活性以及Omi和X染色体连锁的凋亡抑制蛋白(XIAP)的表达。结果:与C组相比,E组骨骼肌线粒体形态结构发生典型的病理改变,骨骼肌线粒体膜通透性转换孔(MPTP)开放程度明显增加(P<0.01)或(P<0.05),同时骨骼肌Omi、XIAP蛋白表达均明显增加(P<0.01或P<0...  相似文献   

6.
细胞凋亡是一种由基因控制的细胞自主性死亡过程,其性质为生理性细胞死亡。细胞凋亡的研究已成为生物医学领域中最热门的课题之一。运动可以诱导细胞凋亡,细胞凋亡发生的比率和程度与运动形式、运动强度和运动持续时间有关,其机制可能主要包括以下方面:影响凋亡相关基因、自由基的介导使氧化与抗氧化系统失衡,损伤线粒体的结构和功能以及机械损伤。为此就运动对细胞凋亡影响的一些新的研究进展进行了综述。  相似文献   

7.
细胞凋亡是一种由基因控制的细胞自主性死亡过程,其性质为生理性细胞死亡。细胞凋亡的研究已成为生物医学领域中最热门的课题之一。运动可以诱导细胞凋亡,细胞凋亡发生的比率和程度与运动形式、运动强度和运动持续时间有关,其机制可能主要包括以下方面:影响凋亡相关基因、自由基的介导使氧化与抗氧化系统失衡,损伤线粒体的结构和功能以及机械损伤。为此就运动对细胞凋亡影响的一些新的研究进展进行了综述。  相似文献   

8.
李新云  付亮亮  程会军  赵书红 《遗传》2017,39(11):1046-1053
MicroRNA (miRNA)是一类长度大约为22 bp的小分子非编码RNA,广泛存在于哺乳动物中,部分miRNA表达具有时空和组织特异性。哺乳动物中miRNA主要通过与靶基因3° UTR区结合抑制其翻译,调控机体生物学功能。miRNA在哺乳动物骨骼肌发育中发挥重要调节作用。哺乳动物骨骼肌发育是一个复杂的生物学过程,包括骨骼肌干细胞增殖、迁移、分化,成肌细胞增殖、分化、肌管融合,肌纤维肥大,能量代谢,纤维类型转换等。miRNA参与骨骼肌发育的各个环节,通过靶向各个时期的关键因子调控骨骼肌发育。本文对miRNA在骨骼肌发育中的调控作用进行了综述,以期为深入理解骨骼肌发育规律提供参考。  相似文献   

9.
细胞凋亡基因的发现李雨民,孙元明(中国医学科学院放射医学研究所天津300192)细胞凋亡是一种具有特征性的形态变化和生化改变的细胞死亡过程,机体启动这一机制以清除无用和有害的细胞。近来细胞凋亡基因的研究取得了很大进展,80年代以来Horvitz等在研...  相似文献   

10.
骨骼肌失神经萎缩的细胞分子生物学研究进展   总被引:3,自引:0,他引:3  
周围神经损伤后,骨骼肌因神经的营养作用丧失及自身废用而发生萎缩,出现一系列形态结构、生理生化及代谢功能等方面的改变。而神经损伤后,骨骼肌萎缩的防治一直是周围神经外科的一大难题,当骨骼肌萎缩发展到不可逆阶段将导致神经修复手术的失败。因此,进一步探索不同时段失神经后萎缩肌肉的形态结构、生理、生化变化以及它们之间的相互关系,为寻找检测肌肉萎缩程度的方法和更好的防治具有重要临床意义。  相似文献   

11.
The age‐related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein‐7 (Pax7) or laminin‐2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age‐related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre‐associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age‐dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing.  相似文献   

12.
13.
During chick embryogenesis, massive alterations occur in the migrating cell's substratum, or extracellular matrix. The possibility that some of the components of this milieu play a regulatory role in cell differentiation was explored in a cell-culture system derived from embryonic chick skeletal muscle tissue. In particular, the effects of collagen and the glycosaminoglycans were studied. Collagen is required for muscle cell attachment and spreading onto plastic and glass tissue-culture dishes. A major constituent of the early embryonic extracellular space, hyaluronate (HA), while having no significant effect on collagen-stimulated cell attachment and spreading, was found to inhibit myogenesis. The muscle-specific M subunit of creatine kinase was preferentially inhibited. Control experiments indicated that the inhibition was specifically caused by HA and not by other glycosaminoglycans. A general metabolic inhibition of the cultures was not observed. Muscle cells could bind to HA-coated beads at all stages of differentiation but were inhibited only when HA was added within the first 24 h of culture. Endogenous GAG in the culture is normally degraded during the first 24 h after plating as well; this may parallel the massive degradation of HA that occurs in the early embryo in vivo. These findings suggest a regulatory role for HA in modulating skeletal muscle differentiation, with degradation of an inhibitory component of the cell substratum a requirement for myogenesis.  相似文献   

14.
Satellite cell depletion in degenerative skeletal muscle   总被引:6,自引:0,他引:6  
Adult skeletal muscle has the striking ability to repair and regenerate itself after injury. This would not be possible without satellite cells, a subpopulation of cells existing at the margin of the myofiber. Under most conditions, satellite cells are quiescent, but they are activated in response to trauma, enabling them to guide skeletal muscle regeneration. In degenerative skeletal muscle states, including motor nerve denervation, advanced age, atrophy secondary to deconditioning or immobilization, and Duchenne muscular dystrophy, satellite cell numbers and proliferative potential significantly decrease, contributing to a diminution of skeletal muscle's regenerative capacity and contractility. This review will highlight the fate of satellite cells in several degenerative conditions involving skeletal muscle, and will attempt to gauge the relative contributions of apoptosis, senescence, impaired proliferative potential, and host factors to satellite cell dysfunction.  相似文献   

15.
Striated skeletal is subject to nonlethal cycles of atrophy in response to a variety of physiological and pathological stimuli, including: starvation, disuse, denervation and inflammation. These cells can also undergo cell death in response to appropriate developmental signals or specific pathological insults. Most of the insights gained into the control of vertebrate skeletal muscle atrophy and death have resulted from experimental interventions rather than natural processes. In contrast, the intersegmental muscles (ISMs) of moths are giant cells that initiate sequential and distinct programs of atrophy and death at the end of metamorphosis as a normal component of development. This model has provided fundamental information about the control, biochemistry, molecular biology and anatomy of naturally occurring atrophy and death in vivo. The ISMs have provided a good complement to studies in vertebrates and may provide insights into clinically relevant disorders.  相似文献   

16.
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.  相似文献   

17.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

18.
Human skeletal muscle tissue displays specific cellular architecture easily damaged during individual existence, requiring multiple resources for regeneration. Congruent with local prerequisites, heterogeneous muscle stem cells (MuSCs) are present in the muscle interstitium. In this study, we aimed to characterize the properties of human muscle interstitial cells that had the characteristic morphology of telocytes (TCs). Immunocytochemistry and immunofluorescence showed that cells with TC morphology stained positive for c-kit/CD117 and VEGF. C-kit positive TCs were separated with magnetic-activated cell sorting, cultured in vitro and expanded for study. These cells exhibited high proliferation capacity (60% expressed endoglin/CD105 and 80% expressed nuclear Ki67). They also exhibited pluripotent capacity limited to Oct4 nuclear staining. In addition, 90% of c-kit positive TCs expressed VEGF. C-kit negative cells in the MuSCs population exhibited fibroblast-like morphology, low trilineage differential potential and negative VEGF staining. These results suggested that c-kit/CD117 positive TCs represented a unique cell type within the MuSC niche.  相似文献   

19.
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号