首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal perturbation difference spectra - TPDS (15-30 degrees C) - of N-acetyl-tyrosine-ethyl ester and o-methyl-N-acetyl-tyrosine were studied in ethyl acetate and dimethyl ether with/without the addition of butanol which served as a proton donor in hydrogen bonding. In all cases the longwave shift of the absorption spectrum is shown to be a principal factor that determines the origin of TPDS and the hydrogen bonding has no effect on these spectra. These results contradict the view that the red shift of protein chromophore spectra at the elevation of temperature is a unique feature of water as a solvent. The water-inaccessible chromophores in proteins may be perturbed by temperature increase, producing red shift.  相似文献   

2.
An active derivative of staphylococcal nuclease, in which only tyrosine residue 115 has been nitrated with use of tetranitromethane, has been characterized using absorbance, circular dichroism, and fluorescence spectroscopy. The results show that nitrotyrosine-115 nuclease is indistinguishable from native nuclease with regard to the average secondary structure of the folded polypeptide chain, the susceptibility of the enzyme to heat denaturation, and the local tertiary structure around tryptophan residue 140. Inasmuch as optical properties of nitrotyrosine-115 nuclease from 300 to 500 nm can be unambiguously assigned to nitrotyrosine residue 115 in the active site region, this modified enzyme presents a good model system for studying the circular dichroism properties of this aromatic amino acid in a protein. The spectral properties of nitrotyrosine-115 nuclease have been compared to those of the model compounds, cyclo-(-Gly-Tyr(3NO2)-) and Tyr(3NO2). Circular dichroism spectral changes in nitrotyrosine-115 nuclease due to the binding of deoxythymidine 3',5'-diphosphate and Ca-2+ have been compared to the corresponding nitrotyrosyl-115 absorption spectral changes. This comparison shows that the circular dichroism difference spectrum exhibits an over-all change in the intensity of the observed Cotton effects, whereas the absorption difference spectrum exhibits a blue shift. This finding supports the suggestion that perturbations of aromatic amino acid chromophores in proteins due to ligand binding result in red or blue shifts in absorption difference spectra, but in over-all changes of intensity in circular dichroism difference spectra.  相似文献   

3.
4.
Spectrophotometric measurement was found to be a sensitive method for evaluating the stability of the chymotrypsin inhibitor from the winged bean. The thermal stability of this protein in aqueous solution was much greater at pH 3 than at pH 8 or pH 11. Evidence from u.v. absorption and from circular dichroism indicated that irreversible conformation changes occurred at higher temperature (greater than 70 degrees). Circular dichroism and optical rotatory dispersion studies at pH 8 show that the inhibitor is rich in beta-structure and virtually devoid of alpha-helix in aqueous solution. We conclude from experiments with denaturing solvents that the inhibitor is very stable and that high concentrations of denaturant are required before unfolding occurs. Chemical modification experiments with tetranitromethane were consistent with a tight stable structure; even in 6M guanidine hydrochloride only three of the five tyrosine residues in the inhibitor molecule were nitrated. However, tyrosine does not seem to be implicated at the reactive site of the inhibitor. Interaction of the inhibitor with alpha-chymotrypsin and chymotrypsin B was also followed by difference spectroscopy in the ultraviolet region. Difference spectra were detected that were characteristic of changes in the environment of both tyrosine and tryptophan chromophores. Comparison of the spectral data obtained for the interaction of the inhibitor with bovine alpha-chymotrypsin and with chymotrypsin B indicated that a tryptophan residue may be involved at the reactive site of the inhibitor. Spectral changes were also detected for the interaction between the chymotrypsin inhibitor and trypsin, although it is well established that the specificity of this inhibitor is restricted to the chymotrypsins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ultraviolet difference spectra, solvent perturbation difference spectra, and temperature perturbation difference spectra indicate that tyrosyl residues of model compounds are affected by sodium dodecyl sulfate. This effect is dependent on the nature of the model compound, being enhanced by positive charges, and is attributed to partial masking of the tyrosyl chromophores by sodium dodecyl sulfate. With reduced carboxymethylated ribonuclease as a model, all three difference spectral methods can be interpreted as indicating nearly complete externalization of tyrosyl chromophores in ribonuclease in the detergent. With small tyrosyl model compounds the calculated number of external tyrosyl residues depends on the nature of the model compound. Using net positively charged tyrosyl compounds as models, nearly 6 external tyrosyl residues are calculated for RNase. N-Acetyltyrosine amide or N-acetyltyrosine esters appear to be inadequate models for tyrosine in proteindetergent solutions because of their weak interactions with detergents.  相似文献   

6.
以蛋白亚基复性技术和皮秒级时间分辨荧光光谱,研究海洋红藻多管藻中R-藻蓝蛋白(R-PC)单体和三聚体内能量传递过程。利用亚基复性技术对分离后的β亚基复性,以R-藻蓝蛋白单体和β亚基之间的差谱获得α亚基的吸收光谱。皮秒级时间分辨三维谱图(时间、波长和强度)直观地显示出藻红胆素发色团向藻蓝胆素发色团的能量传递;根据时间分辨测量结果的组份解析,对R藻蓝蛋白单体和三聚体内能量传递途径和相关传递参数进行了指认和讨论;对观察到的单体与三聚体能量传递组份特性的差别提出了解释。与C-藻蓝蛋白光谱对比,R-藻蓝蛋白独特的色团组成使其更有效地捕获与传递光能。  相似文献   

7.
Millington KR 《Amino acids》2012,43(3):1277-1285
UV-visible diffuse reflectance (DR) spectra of the fibrous proteins wool and feather keratin, silk fibroin and bovine skin collagen are presented. Natural wool contains much higher levels of visible chromophores across the whole visible range (700-400?nm) than the other proteins and only those above 450?nm are effectively removed by bleaching. Both oxidative and reductive bleaching are inefficient for removing yellow chromophores (450-400?nm absorbers) from wool. The DR spectra of the four UV-absorbing amino acids tryptophan, tyrosine, cystine and phenylalanine were recorded as finely ground powders. In contrast to their UV-visible spectra in aqueous solution where tryptophan and tyrosine are the major UV absorbing species, surprisingly the disulphide chromophore of solid cystine has the strongest UV absorbance measured using the DR remission function F(R)(∞). The DR spectra of unpigmented feather and wool keratin appear to be dominated by cystine absorption near 290?nm, whereas silk fibroin appears similar to tyrosine. Because cystine has a flat reflectance spectrum in the visible region from 700 to 400?nm and the powder therefore appears white, cystine absorption does not contribute to the cream colour of wool despite the high concentration of cystine residues near the cuticle surface. The disulphide absorption of solid L: -cystine in the DR spectrum at 290?nm is significantly red shifted by ~40?nm relative to its wavelength in solution, whereas homocystine and lipoic acid showed smaller red shifts of 20?nm. The large red shift observed for cystine and the large difference in intensity of absorption in its UV-visible and DR spectra may be due to differences in the dihedral angle between the crystalline solid and the solvated molecules in solution.  相似文献   

8.
Chromophores that absorb in the far-red region of the spectrum are increasingly being utilized for applications in the biosciences. We have synthesized and evaluated a novel series of fluorescent oxonols based on thiobarbituric acids containing aryl and heteroaryl substituents. The novel chromophores possess narrow absorption spectra ( approximately 40-nm bandwidths), reasonable Stokes shifts ( approximately 25 nm), and quantum yields of up to 0.67 in organic solvents and 0.3 in aqueous solvents, with absorption wavelength maxima at 620-640 nm. The spectral properties of the compounds are sensitive to base and exhibit a loss of far-red absorbance that is concentration and time dependent. Derivatives have been synthesized that can be used for the labeling of macromolecules such as proteins and DNA. The probes show environment sensitivity and the oligonucleotide conjugates sense the formation of duplex DNA. These novel far-red fluorophores have potential applications in diagnostic and research applications.  相似文献   

9.
A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin). The changes were analyzed according to a scheme of consecutive unimolecular reactions. Spectral monitoring of a pH jump from 11.3 to 11.8 reveals that the bilirubin-albumin complex changes its structure in several steps. The UV absorption spectra show that 3.8 tyrosine residues ionize in the first step, 2.5 in the second, none in the third, and 0.8 in the fourth and following steps. The visible absorption spectrum of bound bilirubin changes in the second, third, and fourth steps. The bilirubin spectra of the different bilirubin-albumin complexes occurring in the transition show a common isosbestic point at 445 nm, indicating a change of the dihedral angle between the two bilirubin chromophores in a three-step reaction. It is suggested that 1 tyrosine residue is located close to the bilirubin site and is externalized in the second step. Bilirubin binding to albumin was monitored at two pH values, 11.3 and 11.8. At pH 11.3 the complex changes its structure in a three-step relaxation sequence. A change of the dihedral angle between the bilirubin chromophores can explain the spectral changes observed in the second and third relaxations. Protonation of 0.7 tyrosine residues occurs in the third relaxation, suggesting internalization of a tyrosine residue as a late consequence of bilirubin binding. At pH 11.8 a two-step relaxation sequence follows bilirubin binding. No tyrosine protonation occurs. Bilirubin is probably bound more superficially at pH 11.8 than at pH 11.3.  相似文献   

10.
Circular dichroism spectra and circular dichroism difference spectra, generated when porcine heart mitochondrial and supernatant malate dehydrogenase bind coenzymes or when enzyme dihydroincotinamide nucleotide binary complexes bind substrate analogs, are presented. No significant changes are observed in protein chromophores in the 200- to 240-nm spectral range indicating that there is apparently little or no perturbation of the alpha helix or peptide backbone when binary or ternary complexes are formed. Quite different spectral perturbances occur in the two enzymes with reduced coenzyme binding as well as with substrate-analog binding by enzyme-reduced coenzyme binding. Comparison of spectral perturbations in both enzymes with oxidized or reduced coenzyme binding suggests that the dihydronicotinamide moiety of the coenzyme interacts with or perturbs indirectly the environment of aromatic amino acid residues. Reduced coenzyme binding apparently perturbs tyrosine residues in both mitochondrial malate dehydrogenase and lactic dehydrogenase. Reduced coenzyme binding perturbs tyrosine and tryptophan residues in supernatant malate dehydrogenase. The number of reduced coenzyme binding sites was determined to be two per 70,000 daltons in the mitochondrial enzyme, and the reduced coenzyme dissociation constants, determined through the change in ellipticity at 260 nm, with dihydronicotinamide adenine dinucleotide binding, were found to be good agreement with published values (Holbrook, J. J., and Wolfe, R. G. (1972) Biochemistry 11, 2499-2502) obtained through fluorescence-binding studies and indicate no apparent extra coenzyme binding sites. When D-malate forms a ternary complex with malate dehydrogenase-reduced coenzyme complexes, perturbation of both adenine and dihydronicotinamide chromophores is evident. L-Malate binding, however, apparently produces only a perturbation of the adenine chromophore in such complexes. Since the coenzyme has been found to bind in an open conformation on the surface of the enzyme and the substrate analogs bind at or very near the dihydronicotinamide moiety binding site, protein conformational changes are implicated during ternary complex formation with D-malate which can effect the adenine chromophore at some distance from the substrate binding site.  相似文献   

11.
Acyl carrier protein contains two phenylalanines (residues 28 and 50) and one tyrosine (residue 71). The environment of these chromophores was assessed using first-derivative spectroscopy to examine the uv absorption spectrum of acyl carrier protein in detail. In particular, the phenylalanine absorption maxima were perturbed from the water spectrum, and experiments with model systems suggested that the phenylalanines of acyl carrier protein reside in an environment more similar to acetonitrile than water. The spectrum in the phenylalanine region resulted from the tertiary folding of the protein since these features disappeared in the absorption spectrum of the denatured acyl carrier protein. Tyrosine-71 appears to be a partially buried residue based on the native minus denatured ACP difference spectrum as well as solvent and thermal perturbation spectra. The attachment of a fatty acid to acyl carrier protein resulted in a shift in the absorption spectrum of tyrosine-71 consistent with this chromophore being in a more hydrophobic environment in the acylated protein. The apolar environment of the aromatic amino acids in acyl carrier protein suggests that they are structural components of the hydrophobic sequences that comprise the fatty acid-binding domain of this protein.  相似文献   

12.
Optically detected magnetic resonance (ODMR) signals and phosphorescence spectra were seen of tyrosine in the P. aeruginosa and tryptophanless P. fluorescens azurins and of tryptophan in the former. This confirmed a conclusion from other experiments that the tryptophan of P. aeruginosa cannot effectively quench the singlet energy of both tyrosines. The ODMR signals were all very narrow, additional evidence that the chromophores are buried in the interior of the protein. Accurate values of the zero-field coupling constants D and E lead to a tentative correlation of D values with the red shift of the 0 leads to 0 peak of the phosphorescence spectrum. The environment of tryptophan in P. aeruginosa is the most hydrocarbon like of any tryptophan so far observed. The experiments raise a number of unanswered questions concerning rate processes. The intensities of the 2E transition of tyrosine and the phosphorescence of both tyrosine and tryptophan are substantially reduced when the copper is oxidized. Nevertheless the phsphorescence lifetimes are unaffected. A hole cannot be burned in the ODMR resonances. The homogeneously broadened lines may conceivably be a result of low-temperature proton tunnelling.  相似文献   

13.
We have studied tryptophan fluorescence from a 20-residue synthetic peptide corresponding to the amino terminal of the HA2 subunit of the influenza virus hemagglutinin protein, a putative "fusion" peptide. Decay-associated spectra have been obtained at pH 7.4 and at pH 5 (the optimal pH for influenza virus fusion) in the presence and absence of liposomes. We demonstrate that a blue shift in the total steady-state fluorescence spectrum upon binding to liposomes is due to a movement in characteristic emission wavelength and increased lifetime of one of the resolved spectral components. In contrast, a further shift after lowering the pH is the product of a redistribution in the relative amplitudes of spectral components. Also, each decay component is quenched by spin-labels or anthroxyl groups normally located within the hydrocarbon interior of the membranes. Calculations are presented leading to an estimate of the distance of the tryptophan residue from the bilayer center, suggesting that the tryptophan residues are at or near the hydrocarbon-polar interface. No gross positional change was detected between pH values. Rotational depolarization is shown to be retarded by liposome binding, more so at low pH.  相似文献   

14.
The visible circular dichroism (CD) spectrum of an R-phycoerythrin (Porphyra tenera) is composed of several positive bands. The protein in aqueous buffer very slowly exhibits changes in the CD spectrum of its chromophores, a band at 489 nm undergoes an increase in intensity and a red shift. When the band reached a 493 nm maximum, the spectrum became very stable. The aggregation state of the protein did not change during this spectral conversion. The chromophore CD spectrum was also obtained in the presence of a low concentration of urea or sodium thiocyanate, and the identical change in the CD was noted, but the change was much faster. The visible absorption and CD in the far UV spectra were unaffected by urea. Unchanged visible absorption and protein secondary structure (61% alpha helix) contradicted by comparatively salient alterations in the visible CD spectra suggested very subtle structural changes are influencing some of the chromophores. For a second R-phycoerythrin (Gastroclonium coulteri), the CD of the chromophores had a negative band on the blue edge of the spectrum. This is the first negative CD band observed for any R-phycoerythrin. Treatment of this protein with low concentrations of urea produced a change in the visible CD with the negative band being completely converted to a positive band. Fluorescence studies showed that the treatment by urea did not affect energy migration. Deconvolution of the CD spectra were used to monitor the chromophores. The results demonstrated that the same aggregate of each R-phycoerythrin could exist in two conformations, and this is a novel finding for any red algal or cyanobacterial biliprotein. The two forms of each protein would differ in tertiary structure, but retain the same secondary structures.  相似文献   

15.
Jana S  Dalapati S  Ghosh S  Guchhait N 《Biopolymers》2012,97(10):766-777
The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.  相似文献   

16.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

17.
Thermolysin underwent spectral changes and pKa shifts upon mixing with alcoholic solvents. A hyperchromic spectra and shift occured upon activation of the enzyme by solvents used in dipeptide (Z-Phe-Phe-OMe) synthesis. This effect was decreased when enzyme was pre-treated with inhibitor. Model substrates did not undergo any significant change on mixing with the same solvents. pKa shift of upto 0.3 units was observed at solvent concentration showing maximum activity and the pKa shifts directly correlated with activity profiles of thermolysin.  相似文献   

18.
A tunable fourth derivative UV absorbance method based on a variable spectral shift has been developed and compared to the Savitzky-Golay method and the analytical derivative. The parameters of the method were optimised for the analysis of the UV absorbance spectra of the aromatic amino acids to quantify the effect of decreasing solvent polarity on their fourth derivative spectra. The wavelength of the highest maximum (max) (for tyrosine and phenylalanine) or the amplitude of the highest maximum (Amax) (for tryptophan), were shown to depend linearly on the dielectric constant of the solvent, ranging from water to cyclohexane. The only effect of pressure in the 1 to 500 MPa range is a small decrease in the fourth derivative amplitude. This method appears therefore as a suitable tool to evaluate changes of the dielectric constant in the vicinity of the aromatic amino acids in proteins which undergo pressure induced structural changes.  相似文献   

19.
The bacteriophage T4 helix destabilizing protein (hdp) gp32 and its complexes with poly(rA) and poly(dA) were studied with ultra-violet resonant Raman spectroscopy. The UV-resonant Raman (UV-RR) spectrum of the complex of gp5, the coat protein of bacteriophage M13, with poly(dA) was also measured and is compared with the spectrum of the gp 32/poly(dA) complex. The excitation wavelength was 245.1 nm. This is on the far UV-side of the first absorption bands of adenine and near a "window" in the protein absorption spectrum. The overlap of fluorescence due to chromophores present in the protein and resonance Raman scattering was prevented by this choice of wavelength. The spectra of the protein/polynucleotide complexes are compared with the native nucleotide spectra measured at varying temperatures. The hyperchromicity which is expected when a nucleotide changes from a stacked to an unstacked conformation was not observed for poly(rA), neither upon temperature increase nor on protein binding. In both cases poly(dA) revealed a clear hyperchromicity. This different behavior of poly(rA) and poly(dA) is probably a consequence of their different conformations. The contributions of the proteins to the spectra is weak except for two bands, at 1550 and 1610 cm-1 due to tryptophan (in case of gp32) and one band near 1610 cm-1 due to tyrosine and phenylalanine.  相似文献   

20.
Fluorescence phase shift and demodulation methods were used in the analysis of excited-state reactions and to investigate solvent relaxation around fluorophores in viscous solvents. The chosen samples illustrate the results expected for fluorophores bound to biological macromolecules. These moderately simple samples served to test the theoretical predictions described in the preceding paper (J.R. Lakowicz and A.B. Balter, Biophys. Chem. 16 (1982) 99.) and to illustrate the characteristic features of phase-modulation data expected from samples which display time-dependent spectral shifts. The excited-stale protonation of acridine and exciplex formation between anthracene and diethylaniline provided examples of one-step reactions in which the lifetimes of the initially excited and the reacted species were independent of emission wavelength. Using these samples we demonstrated the following: (I) Wavelength-dependent phase shift and demodulation values can be used to prove the occurrence of an excited-state process. Proof is obtained by observation of phase angles (φ) larger than 90° or by measurement of ratios of m/cos φ > 1, where m is the modulation of the emission relative to that of the excitation. (2) For a two-state process the individual emission spectra of each state can be calculated from the wavelength-dependent phase and modulation data. (3) The phase difference or demodulation factor between the initially excited and the reacted states reveals directly the fluorescence lifetime of the product of the reaction. (4) Phase-sensitive detection of fluorescence can be used to prove that the lifetimes of both the initially excited and the reacted states are independent of emission wavelength. (5) If steady-state spectra of the individual species are known, then phase-sensitive emission spectra can be used to measure the lifetimes of the individual components irrespective of the extent of spectral overtap. (6) Spectral regions of constant lifetime can be identified by the ratios of phase-sensitive emission spectra. In addition, we examined 6-propionyl-2-dimethylaminonaphthalene(PRODAN) and N-acetyl-l-tryptophanamide (NATA) in viscous solvents where the solvent relaxation times were comparable to the fluorescence lifetimes. Using PRODAN in n-butanol we used m/cos φ measurements, relative to the blue edge of the emission, to demonstrate that solvent relaxation requires more than a single step. For NATA in propylene glycol we used phase-sensitive detection of fluorescence to directly record the emission spectra of the initially excited and the solvent relaxed states. These measurements can be easily extended to fluorophores which are bound to proteins and membranes and are likely to be useful in studies of the dynamic properties of biopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号